Step |
Hyp |
Ref |
Expression |
1 |
|
isdrngd.b |
|
2 |
|
isdrngd.t |
|
3 |
|
isdrngd.z |
|
4 |
|
isdrngd.u |
|
5 |
|
isdrngd.r |
|
6 |
|
isdrngd.n |
|
7 |
|
isdrngd.o |
|
8 |
|
isdrngd.i |
|
9 |
|
isdrngrd.k |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
10 11
|
opprbas |
|
13 |
1 12
|
eqtrdi |
|
14 |
|
eqidd |
|
15 |
|
eqid |
|
16 |
10 15
|
oppr0 |
|
17 |
3 16
|
eqtrdi |
|
18 |
|
eqid |
|
19 |
10 18
|
oppr1 |
|
20 |
4 19
|
eqtrdi |
|
21 |
10
|
opprring |
|
22 |
5 21
|
syl |
|
23 |
|
eleq1w |
|
24 |
|
neeq1 |
|
25 |
23 24
|
anbi12d |
|
26 |
25
|
3anbi2d |
|
27 |
|
oveq1 |
|
28 |
27
|
neeq1d |
|
29 |
26 28
|
imbi12d |
|
30 |
|
eleq1w |
|
31 |
|
neeq1 |
|
32 |
30 31
|
anbi12d |
|
33 |
32
|
3anbi3d |
|
34 |
|
oveq2 |
|
35 |
34
|
neeq1d |
|
36 |
33 35
|
imbi12d |
|
37 |
2
|
3ad2ant1 |
|
38 |
37
|
oveqd |
|
39 |
|
eqid |
|
40 |
|
eqid |
|
41 |
11 39 10 40
|
opprmul |
|
42 |
38 41
|
eqtr4di |
|
43 |
42 6
|
eqnetrrd |
|
44 |
43
|
3com23 |
|
45 |
36 44
|
chvarvv |
|
46 |
29 45
|
chvarvv |
|
47 |
11 39 10 40
|
opprmul |
|
48 |
2
|
adantr |
|
49 |
48
|
oveqd |
|
50 |
49 9
|
eqtr3d |
|
51 |
47 50
|
eqtrid |
|
52 |
13 14 17 20 22 46 7 8 51
|
isdrngd |
|
53 |
10
|
opprdrng |
|
54 |
52 53
|
sylibr |
|