Metamath Proof Explorer


Theorem isdrngrd

Description: Properties that characterize a division ring among rings: it should be nonzero, have no nonzero zero-divisors, and every nonzero element x should have a right-inverse I ( x ) . See isdrngd for the characterization using left-inverses. (Contributed by NM, 10-Aug-2013) Remove hypothesis. (Revised by SN, 19-Feb-2025)

Ref Expression
Hypotheses isdrngd.b φ B = Base R
isdrngd.t φ · ˙ = R
isdrngd.z φ 0 ˙ = 0 R
isdrngd.u φ 1 ˙ = 1 R
isdrngd.r φ R Ring
isdrngd.n φ x B x 0 ˙ y B y 0 ˙ x · ˙ y 0 ˙
isdrngd.o φ 1 ˙ 0 ˙
isdrngd.i φ x B x 0 ˙ I B
isdrngrd.k φ x B x 0 ˙ x · ˙ I = 1 ˙
Assertion isdrngrd φ R DivRing

Proof

Step Hyp Ref Expression
1 isdrngd.b φ B = Base R
2 isdrngd.t φ · ˙ = R
3 isdrngd.z φ 0 ˙ = 0 R
4 isdrngd.u φ 1 ˙ = 1 R
5 isdrngd.r φ R Ring
6 isdrngd.n φ x B x 0 ˙ y B y 0 ˙ x · ˙ y 0 ˙
7 isdrngd.o φ 1 ˙ 0 ˙
8 isdrngd.i φ x B x 0 ˙ I B
9 isdrngrd.k φ x B x 0 ˙ x · ˙ I = 1 ˙
10 eqid opp r R = opp r R
11 eqid Base R = Base R
12 10 11 opprbas Base R = Base opp r R
13 1 12 eqtrdi φ B = Base opp r R
14 eqidd φ opp r R = opp r R
15 eqid 0 R = 0 R
16 10 15 oppr0 0 R = 0 opp r R
17 3 16 eqtrdi φ 0 ˙ = 0 opp r R
18 eqid 1 R = 1 R
19 10 18 oppr1 1 R = 1 opp r R
20 4 19 eqtrdi φ 1 ˙ = 1 opp r R
21 10 opprring R Ring opp r R Ring
22 5 21 syl φ opp r R Ring
23 eleq1w y = x y B x B
24 neeq1 y = x y 0 ˙ x 0 ˙
25 23 24 anbi12d y = x y B y 0 ˙ x B x 0 ˙
26 25 3anbi2d y = x φ y B y 0 ˙ z B z 0 ˙ φ x B x 0 ˙ z B z 0 ˙
27 oveq1 y = x y opp r R z = x opp r R z
28 27 neeq1d y = x y opp r R z 0 ˙ x opp r R z 0 ˙
29 26 28 imbi12d y = x φ y B y 0 ˙ z B z 0 ˙ y opp r R z 0 ˙ φ x B x 0 ˙ z B z 0 ˙ x opp r R z 0 ˙
30 eleq1w x = z x B z B
31 neeq1 x = z x 0 ˙ z 0 ˙
32 30 31 anbi12d x = z x B x 0 ˙ z B z 0 ˙
33 32 3anbi3d x = z φ y B y 0 ˙ x B x 0 ˙ φ y B y 0 ˙ z B z 0 ˙
34 oveq2 x = z y opp r R x = y opp r R z
35 34 neeq1d x = z y opp r R x 0 ˙ y opp r R z 0 ˙
36 33 35 imbi12d x = z φ y B y 0 ˙ x B x 0 ˙ y opp r R x 0 ˙ φ y B y 0 ˙ z B z 0 ˙ y opp r R z 0 ˙
37 2 3ad2ant1 φ x B x 0 ˙ y B y 0 ˙ · ˙ = R
38 37 oveqd φ x B x 0 ˙ y B y 0 ˙ x · ˙ y = x R y
39 eqid R = R
40 eqid opp r R = opp r R
41 11 39 10 40 opprmul y opp r R x = x R y
42 38 41 eqtr4di φ x B x 0 ˙ y B y 0 ˙ x · ˙ y = y opp r R x
43 42 6 eqnetrrd φ x B x 0 ˙ y B y 0 ˙ y opp r R x 0 ˙
44 43 3com23 φ y B y 0 ˙ x B x 0 ˙ y opp r R x 0 ˙
45 36 44 chvarvv φ y B y 0 ˙ z B z 0 ˙ y opp r R z 0 ˙
46 29 45 chvarvv φ x B x 0 ˙ z B z 0 ˙ x opp r R z 0 ˙
47 11 39 10 40 opprmul I opp r R x = x R I
48 2 adantr φ x B x 0 ˙ · ˙ = R
49 48 oveqd φ x B x 0 ˙ x · ˙ I = x R I
50 49 9 eqtr3d φ x B x 0 ˙ x R I = 1 ˙
51 47 50 eqtrid φ x B x 0 ˙ I opp r R x = 1 ˙
52 13 14 17 20 22 46 7 8 51 isdrngd φ opp r R DivRing
53 10 opprdrng R DivRing opp r R DivRing
54 52 53 sylibr φ R DivRing