Step |
Hyp |
Ref |
Expression |
1 |
|
drsbn0.b |
|
2 |
|
drsdirfi.l |
|
3 |
|
drsprs |
|
4 |
|
simpl |
|
5 |
|
elinel1 |
|
6 |
5
|
elpwid |
|
7 |
6
|
adantl |
|
8 |
|
elinel2 |
|
9 |
8
|
adantl |
|
10 |
1 2
|
drsdirfi |
|
11 |
4 7 9 10
|
syl3anc |
|
12 |
11
|
ralrimiva |
|
13 |
3 12
|
jca |
|
14 |
|
simpl |
|
15 |
|
0elpw |
|
16 |
|
0fin |
|
17 |
15 16
|
elini |
|
18 |
|
raleq |
|
19 |
18
|
rexbidv |
|
20 |
19
|
rspcv |
|
21 |
17 20
|
ax-mp |
|
22 |
|
rexn0 |
|
23 |
21 22
|
syl |
|
24 |
23
|
adantl |
|
25 |
|
raleq |
|
26 |
25
|
rexbidv |
|
27 |
|
simplr |
|
28 |
|
prelpwi |
|
29 |
|
prfi |
|
30 |
29
|
a1i |
|
31 |
28 30
|
elind |
|
32 |
31
|
adantl |
|
33 |
26 27 32
|
rspcdva |
|
34 |
|
vex |
|
35 |
|
vex |
|
36 |
|
breq1 |
|
37 |
|
breq1 |
|
38 |
34 35 36 37
|
ralpr |
|
39 |
38
|
rexbii |
|
40 |
33 39
|
sylib |
|
41 |
40
|
ralrimivva |
|
42 |
1 2
|
isdrs |
|
43 |
14 24 41 42
|
syl3anbrc |
|
44 |
13 43
|
impbii |
|