Metamath Proof Explorer


Theorem isepi

Description: Definition of an epimorphism in a category. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses isepi.b B = Base C
isepi.h H = Hom C
isepi.o · ˙ = comp C
isepi.e E = Epi C
isepi.c φ C Cat
isepi.x φ X B
isepi.y φ Y B
Assertion isepi φ F X E Y F X H Y z B Fun g Y H z g X Y · ˙ z F -1

Proof

Step Hyp Ref Expression
1 isepi.b B = Base C
2 isepi.h H = Hom C
3 isepi.o · ˙ = comp C
4 isepi.e E = Epi C
5 isepi.c φ C Cat
6 isepi.x φ X B
7 isepi.y φ Y B
8 eqid oppCat C = oppCat C
9 8 1 oppcbas B = Base oppCat C
10 eqid Hom oppCat C = Hom oppCat C
11 eqid comp oppCat C = comp oppCat C
12 eqid Mono oppCat C = Mono oppCat C
13 8 oppccat C Cat oppCat C Cat
14 5 13 syl φ oppCat C Cat
15 9 10 11 12 14 7 6 ismon φ F Y Mono oppCat C X F Y Hom oppCat C X z B Fun g z Hom oppCat C Y F z Y comp oppCat C X g -1
16 8 5 12 4 oppcmon φ Y Mono oppCat C X = X E Y
17 16 eleq2d φ F Y Mono oppCat C X F X E Y
18 2 8 oppchom Y Hom oppCat C X = X H Y
19 18 a1i φ Y Hom oppCat C X = X H Y
20 19 eleq2d φ F Y Hom oppCat C X F X H Y
21 2 8 oppchom z Hom oppCat C Y = Y H z
22 21 a1i φ z B z Hom oppCat C Y = Y H z
23 simpr φ z B z B
24 7 adantr φ z B Y B
25 6 adantr φ z B X B
26 1 3 8 23 24 25 oppcco φ z B F z Y comp oppCat C X g = g X Y · ˙ z F
27 22 26 mpteq12dv φ z B g z Hom oppCat C Y F z Y comp oppCat C X g = g Y H z g X Y · ˙ z F
28 27 cnveqd φ z B g z Hom oppCat C Y F z Y comp oppCat C X g -1 = g Y H z g X Y · ˙ z F -1
29 28 funeqd φ z B Fun g z Hom oppCat C Y F z Y comp oppCat C X g -1 Fun g Y H z g X Y · ˙ z F -1
30 29 ralbidva φ z B Fun g z Hom oppCat C Y F z Y comp oppCat C X g -1 z B Fun g Y H z g X Y · ˙ z F -1
31 20 30 anbi12d φ F Y Hom oppCat C X z B Fun g z Hom oppCat C Y F z Y comp oppCat C X g -1 F X H Y z B Fun g Y H z g X Y · ˙ z F -1
32 15 17 31 3bitr3d φ F X E Y F X H Y z B Fun g Y H z g X Y · ˙ z F -1