Metamath Proof Explorer


Theorem iseqsetvlem

Description: Lemma for iseqsetv-cleq . (Contributed by Wolf Lammen, 17-Aug-2025) (Proof modification is discouraged.)

Ref Expression
Assertion iseqsetvlem x x = A z z = A

Proof

Step Hyp Ref Expression
1 eqeq1 x = z x = A z = A
2 1 cbvexvw x x = A z z = A