Metamath Proof Explorer


Theorem iserabs

Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses iserabs.1 Z = M
iserabs.2 φ seq M + F A
iserabs.3 φ seq M + G B
iserabs.5 φ M
iserabs.6 φ k Z F k
iserabs.7 φ k Z G k = F k
Assertion iserabs φ A B

Proof

Step Hyp Ref Expression
1 iserabs.1 Z = M
2 iserabs.2 φ seq M + F A
3 iserabs.3 φ seq M + G B
4 iserabs.5 φ M
5 iserabs.6 φ k Z F k
6 iserabs.7 φ k Z G k = F k
7 1 fvexi Z V
8 7 mptex m Z seq M + F m V
9 8 a1i φ m Z seq M + F m V
10 1 4 5 serf φ seq M + F : Z
11 10 ffvelrnda φ n Z seq M + F n
12 2fveq3 m = n seq M + F m = seq M + F n
13 eqid m Z seq M + F m = m Z seq M + F m
14 fvex seq M + F n V
15 12 13 14 fvmpt n Z m Z seq M + F m n = seq M + F n
16 15 adantl φ n Z m Z seq M + F m n = seq M + F n
17 1 2 9 4 11 16 climabs φ m Z seq M + F m A
18 11 abscld φ n Z seq M + F n
19 16 18 eqeltrd φ n Z m Z seq M + F m n
20 5 abscld φ k Z F k
21 6 20 eqeltrd φ k Z G k
22 1 4 21 serfre φ seq M + G : Z
23 22 ffvelrnda φ n Z seq M + G n
24 simpr φ n Z n Z
25 24 1 eleqtrdi φ n Z n M
26 elfzuz k M n k M
27 26 1 eleqtrrdi k M n k Z
28 27 5 sylan2 φ k M n F k
29 28 adantlr φ n Z k M n F k
30 27 6 sylan2 φ k M n G k = F k
31 30 adantlr φ n Z k M n G k = F k
32 25 29 31 seqabs φ n Z seq M + F n seq M + G n
33 16 32 eqbrtrd φ n Z m Z seq M + F m n seq M + G n
34 1 4 17 3 19 23 33 climle φ A B