Metamath Proof Explorer


Theorem iseraltlem1

Description: Lemma for iseralt . A decreasing sequence with limit zero consists of positive terms. (Contributed by Mario Carneiro, 6-Apr-2015)

Ref Expression
Hypotheses iseralt.1 Z = M
iseralt.2 φ M
iseralt.3 φ G : Z
iseralt.4 φ k Z G k + 1 G k
iseralt.5 φ G 0
Assertion iseraltlem1 φ N Z 0 G N

Proof

Step Hyp Ref Expression
1 iseralt.1 Z = M
2 iseralt.2 φ M
3 iseralt.3 φ G : Z
4 iseralt.4 φ k Z G k + 1 G k
5 iseralt.5 φ G 0
6 eqid N = N
7 eluzelz N M N
8 7 1 eleq2s N Z N
9 8 adantl φ N Z N
10 5 adantr φ N Z G 0
11 3 ffvelrnda φ N Z G N
12 11 recnd φ N Z G N
13 1z 1
14 uzssz 1
15 zex V
16 14 15 climconst2 G N 1 × G N G N
17 12 13 16 sylancl φ N Z × G N G N
18 3 ad2antrr φ N Z n N G : Z
19 1 uztrn2 N Z n N n Z
20 19 adantll φ N Z n N n Z
21 18 20 ffvelrnd φ N Z n N G n
22 eluzelz n N n
23 22 adantl φ N Z n N n
24 fvex G N V
25 24 fvconst2 n × G N n = G N
26 23 25 syl φ N Z n N × G N n = G N
27 11 adantr φ N Z n N G N
28 26 27 eqeltrd φ N Z n N × G N n
29 simpr φ N Z n N n N
30 18 adantr φ N Z n N k N n G : Z
31 simplr φ N Z n N N Z
32 elfzuz k N n k N
33 1 uztrn2 N Z k N k Z
34 31 32 33 syl2an φ N Z n N k N n k Z
35 30 34 ffvelrnd φ N Z n N k N n G k
36 simpl φ N Z n N φ N Z
37 elfzuz k N n 1 k N
38 33 adantll φ N Z k N k Z
39 4 adantlr φ N Z k Z G k + 1 G k
40 38 39 syldan φ N Z k N G k + 1 G k
41 36 37 40 syl2an φ N Z n N k N n 1 G k + 1 G k
42 29 35 41 monoord2 φ N Z n N G n G N
43 42 26 breqtrrd φ N Z n N G n × G N n
44 6 9 10 17 21 28 43 climle φ N Z 0 G N