Step |
Hyp |
Ref |
Expression |
1 |
|
iseralt.1 |
|
2 |
|
iseralt.2 |
|
3 |
|
iseralt.3 |
|
4 |
|
iseralt.4 |
|
5 |
|
iseralt.5 |
|
6 |
|
eqid |
|
7 |
|
eluzelz |
|
8 |
7 1
|
eleq2s |
|
9 |
8
|
adantl |
|
10 |
5
|
adantr |
|
11 |
3
|
ffvelrnda |
|
12 |
11
|
recnd |
|
13 |
|
1z |
|
14 |
|
uzssz |
|
15 |
|
zex |
|
16 |
14 15
|
climconst2 |
|
17 |
12 13 16
|
sylancl |
|
18 |
3
|
ad2antrr |
|
19 |
1
|
uztrn2 |
|
20 |
19
|
adantll |
|
21 |
18 20
|
ffvelrnd |
|
22 |
|
eluzelz |
|
23 |
22
|
adantl |
|
24 |
|
fvex |
|
25 |
24
|
fvconst2 |
|
26 |
23 25
|
syl |
|
27 |
11
|
adantr |
|
28 |
26 27
|
eqeltrd |
|
29 |
|
simpr |
|
30 |
18
|
adantr |
|
31 |
|
simplr |
|
32 |
|
elfzuz |
|
33 |
1
|
uztrn2 |
|
34 |
31 32 33
|
syl2an |
|
35 |
30 34
|
ffvelrnd |
|
36 |
|
simpl |
|
37 |
|
elfzuz |
|
38 |
33
|
adantll |
|
39 |
4
|
adantlr |
|
40 |
38 39
|
syldan |
|
41 |
36 37 40
|
syl2an |
|
42 |
29 35 41
|
monoord2 |
|
43 |
42 26
|
breqtrrd |
|
44 |
6 9 10 17 21 28 43
|
climle |
|