Metamath Proof Explorer


Theorem iseraltlem3

Description: Lemma for iseralt . From iseraltlem2 , we have ( -u 1 ^ n ) x. S ( n + 2 k ) <_ ( -u 1 ^ n ) x. S ( n ) and ( -u 1 ^ n ) x. S ( n + 1 ) <_ ( -u 1 ^ n ) x. S ( n + 2 k + 1 ) , and we also have ( -u 1 ^ n ) x. S ( n + 1 ) = ( -u 1 ^ n ) x. S ( n ) - G ( n + 1 ) for each n by the definition of the partial sum S , so combining the inequalities we get ( -u 1 ^ n ) x. S ( n ) - G ( n + 1 ) = ( -u 1 ^ n ) x. S ( n + 1 ) <_ ( -u 1 ^ n ) x. S ( n + 2 k + 1 ) = ( -u 1 ^ n ) x. S ( n + 2 k ) - G ( n + 2 k + 1 ) <_ ( -u 1 ^ n ) x. S ( n + 2 k ) <_ ( -u 1 ^ n ) x. S ( n ) <_ ( -u 1 ^ n ) x. S ( n ) + G ( n + 1 ) , so | ( -u 1 ^ n ) x. S ( n + 2 k + 1 ) - ( -u 1 ^ n ) x. S ( n ) | = | S ( n + 2 k + 1 ) - S ( n ) | <_ G ( n + 1 ) and | ( -u 1 ^ n ) x. S ( n + 2 k ) - ( -u 1 ^ n ) x. S ( n ) | = | S ( n + 2 k ) - S ( n ) | <_ G ( n + 1 ) . Thus, both even and odd partial sums are Cauchy if G converges to 0 . (Contributed by Mario Carneiro, 6-Apr-2015)

Ref Expression
Hypotheses iseralt.1 Z = M
iseralt.2 φ M
iseralt.3 φ G : Z
iseralt.4 φ k Z G k + 1 G k
iseralt.5 φ G 0
iseralt.6 φ k Z F k = 1 k G k
Assertion iseraltlem3 φ N Z K 0 seq M + F N + 2 K seq M + F N G N + 1 seq M + F N + 2 K + 1 seq M + F N G N + 1

Proof

Step Hyp Ref Expression
1 iseralt.1 Z = M
2 iseralt.2 φ M
3 iseralt.3 φ G : Z
4 iseralt.4 φ k Z G k + 1 G k
5 iseralt.5 φ G 0
6 iseralt.6 φ k Z F k = 1 k G k
7 neg1rr 1
8 7 a1i φ N Z K 0 1
9 neg1ne0 1 0
10 9 a1i φ N Z K 0 1 0
11 uzssz M
12 1 11 eqsstri Z
13 simp2 φ N Z K 0 N Z
14 12 13 sseldi φ N Z K 0 N
15 8 10 14 reexpclzd φ N Z K 0 1 N
16 15 recnd φ N Z K 0 1 N
17 7 a1i φ k Z 1
18 9 a1i φ k Z 1 0
19 simpr φ k Z k Z
20 12 19 sseldi φ k Z k
21 17 18 20 reexpclzd φ k Z 1 k
22 3 ffvelrnda φ k Z G k
23 21 22 remulcld φ k Z 1 k G k
24 6 23 eqeltrd φ k Z F k
25 1 2 24 serfre φ seq M + F : Z
26 25 3ad2ant1 φ N Z K 0 seq M + F : Z
27 13 1 eleqtrdi φ N Z K 0 N M
28 2nn0 2 0
29 simp3 φ N Z K 0 K 0
30 nn0mulcl 2 0 K 0 2 K 0
31 28 29 30 sylancr φ N Z K 0 2 K 0
32 uzaddcl N M 2 K 0 N + 2 K M
33 27 31 32 syl2anc φ N Z K 0 N + 2 K M
34 33 1 eleqtrrdi φ N Z K 0 N + 2 K Z
35 26 34 ffvelrnd φ N Z K 0 seq M + F N + 2 K
36 35 recnd φ N Z K 0 seq M + F N + 2 K
37 26 13 ffvelrnd φ N Z K 0 seq M + F N
38 37 recnd φ N Z K 0 seq M + F N
39 16 36 38 subdid φ N Z K 0 1 N seq M + F N + 2 K seq M + F N = 1 N seq M + F N + 2 K 1 N seq M + F N
40 39 fveq2d φ N Z K 0 1 N seq M + F N + 2 K seq M + F N = 1 N seq M + F N + 2 K 1 N seq M + F N
41 35 37 resubcld φ N Z K 0 seq M + F N + 2 K seq M + F N
42 41 recnd φ N Z K 0 seq M + F N + 2 K seq M + F N
43 16 42 absmuld φ N Z K 0 1 N seq M + F N + 2 K seq M + F N = 1 N seq M + F N + 2 K seq M + F N
44 40 43 eqtr3d φ N Z K 0 1 N seq M + F N + 2 K 1 N seq M + F N = 1 N seq M + F N + 2 K seq M + F N
45 8 recnd φ N Z K 0 1
46 absexpz 1 1 0 N 1 N = 1 N
47 45 10 14 46 syl3anc φ N Z K 0 1 N = 1 N
48 ax-1cn 1
49 48 absnegi 1 = 1
50 abs1 1 = 1
51 49 50 eqtri 1 = 1
52 51 oveq1i 1 N = 1 N
53 1exp N 1 N = 1
54 14 53 syl φ N Z K 0 1 N = 1
55 52 54 syl5eq φ N Z K 0 1 N = 1
56 47 55 eqtrd φ N Z K 0 1 N = 1
57 56 oveq1d φ N Z K 0 1 N seq M + F N + 2 K seq M + F N = 1 seq M + F N + 2 K seq M + F N
58 42 abscld φ N Z K 0 seq M + F N + 2 K seq M + F N
59 58 recnd φ N Z K 0 seq M + F N + 2 K seq M + F N
60 59 mulid2d φ N Z K 0 1 seq M + F N + 2 K seq M + F N = seq M + F N + 2 K seq M + F N
61 44 57 60 3eqtrd φ N Z K 0 1 N seq M + F N + 2 K 1 N seq M + F N = seq M + F N + 2 K seq M + F N
62 15 37 remulcld φ N Z K 0 1 N seq M + F N
63 3 3ad2ant1 φ N Z K 0 G : Z
64 1 peano2uzs N Z N + 1 Z
65 64 3ad2ant2 φ N Z K 0 N + 1 Z
66 63 65 ffvelrnd φ N Z K 0 G N + 1
67 62 66 resubcld φ N Z K 0 1 N seq M + F N G N + 1
68 1 peano2uzs N + 2 K Z N + 2 K + 1 Z
69 34 68 syl φ N Z K 0 N + 2 K + 1 Z
70 26 69 ffvelrnd φ N Z K 0 seq M + F N + 2 K + 1
71 15 70 remulcld φ N Z K 0 1 N seq M + F N + 2 K + 1
72 15 35 remulcld φ N Z K 0 1 N seq M + F N + 2 K
73 seqp1 N M seq M + F N + 1 = seq M + F N + F N + 1
74 27 73 syl φ N Z K 0 seq M + F N + 1 = seq M + F N + F N + 1
75 fveq2 k = N + 1 F k = F N + 1
76 oveq2 k = N + 1 1 k = 1 N + 1
77 fveq2 k = N + 1 G k = G N + 1
78 76 77 oveq12d k = N + 1 1 k G k = 1 N + 1 G N + 1
79 75 78 eqeq12d k = N + 1 F k = 1 k G k F N + 1 = 1 N + 1 G N + 1
80 6 ralrimiva φ k Z F k = 1 k G k
81 80 3ad2ant1 φ N Z K 0 k Z F k = 1 k G k
82 79 81 65 rspcdva φ N Z K 0 F N + 1 = 1 N + 1 G N + 1
83 82 oveq2d φ N Z K 0 seq M + F N + F N + 1 = seq M + F N + 1 N + 1 G N + 1
84 45 10 14 expp1zd φ N Z K 0 1 N + 1 = 1 N -1
85 neg1cn 1
86 mulcom 1 N 1 1 N -1 = -1 1 N
87 16 85 86 sylancl φ N Z K 0 1 N -1 = -1 1 N
88 16 mulm1d φ N Z K 0 -1 1 N = 1 N
89 84 87 88 3eqtrd φ N Z K 0 1 N + 1 = 1 N
90 89 oveq1d φ N Z K 0 1 N + 1 G N + 1 = 1 N G N + 1
91 66 recnd φ N Z K 0 G N + 1
92 16 91 mulneg1d φ N Z K 0 1 N G N + 1 = 1 N G N + 1
93 90 92 eqtrd φ N Z K 0 1 N + 1 G N + 1 = 1 N G N + 1
94 93 oveq2d φ N Z K 0 seq M + F N + 1 N + 1 G N + 1 = seq M + F N + 1 N G N + 1
95 74 83 94 3eqtrd φ N Z K 0 seq M + F N + 1 = seq M + F N + 1 N G N + 1
96 15 66 remulcld φ N Z K 0 1 N G N + 1
97 96 recnd φ N Z K 0 1 N G N + 1
98 38 97 negsubd φ N Z K 0 seq M + F N + 1 N G N + 1 = seq M + F N 1 N G N + 1
99 95 98 eqtrd φ N Z K 0 seq M + F N + 1 = seq M + F N 1 N G N + 1
100 99 oveq2d φ N Z K 0 1 N seq M + F N + 1 = 1 N seq M + F N 1 N G N + 1
101 16 38 97 subdid φ N Z K 0 1 N seq M + F N 1 N G N + 1 = 1 N seq M + F N 1 N 1 N G N + 1
102 14 zcnd φ N Z K 0 N
103 102 2timesd φ N Z K 0 2 N = N + N
104 103 oveq2d φ N Z K 0 1 2 N = 1 N + N
105 2z 2
106 105 a1i φ N Z K 0 2
107 expmulz 1 1 0 2 N 1 2 N = -1 2 N
108 45 10 106 14 107 syl22anc φ N Z K 0 1 2 N = -1 2 N
109 104 108 eqtr3d φ N Z K 0 1 N + N = -1 2 N
110 neg1sqe1 1 2 = 1
111 110 oveq1i -1 2 N = 1 N
112 109 111 syl6eq φ N Z K 0 1 N + N = 1 N
113 expaddz 1 1 0 N N 1 N + N = 1 N 1 N
114 45 10 14 14 113 syl22anc φ N Z K 0 1 N + N = 1 N 1 N
115 112 114 54 3eqtr3d φ N Z K 0 1 N 1 N = 1
116 115 oveq1d φ N Z K 0 1 N 1 N G N + 1 = 1 G N + 1
117 16 16 91 mulassd φ N Z K 0 1 N 1 N G N + 1 = 1 N 1 N G N + 1
118 91 mulid2d φ N Z K 0 1 G N + 1 = G N + 1
119 116 117 118 3eqtr3d φ N Z K 0 1 N 1 N G N + 1 = G N + 1
120 119 oveq2d φ N Z K 0 1 N seq M + F N 1 N 1 N G N + 1 = 1 N seq M + F N G N + 1
121 100 101 120 3eqtrd φ N Z K 0 1 N seq M + F N + 1 = 1 N seq M + F N G N + 1
122 1 2 3 4 5 6 iseraltlem2 φ N + 1 Z K 0 1 N + 1 seq M + F N + 1 + 2 K 1 N + 1 seq M + F N + 1
123 64 122 syl3an2 φ N Z K 0 1 N + 1 seq M + F N + 1 + 2 K 1 N + 1 seq M + F N + 1
124 1cnd φ N Z K 0 1
125 31 nn0cnd φ N Z K 0 2 K
126 102 124 125 add32d φ N Z K 0 N + 1 + 2 K = N + 2 K + 1
127 126 fveq2d φ N Z K 0 seq M + F N + 1 + 2 K = seq M + F N + 2 K + 1
128 89 127 oveq12d φ N Z K 0 1 N + 1 seq M + F N + 1 + 2 K = 1 N seq M + F N + 2 K + 1
129 89 oveq1d φ N Z K 0 1 N + 1 seq M + F N + 1 = 1 N seq M + F N + 1
130 123 128 129 3brtr3d φ N Z K 0 1 N seq M + F N + 2 K + 1 1 N seq M + F N + 1
131 70 recnd φ N Z K 0 seq M + F N + 2 K + 1
132 16 131 mulneg1d φ N Z K 0 1 N seq M + F N + 2 K + 1 = 1 N seq M + F N + 2 K + 1
133 26 65 ffvelrnd φ N Z K 0 seq M + F N + 1
134 133 recnd φ N Z K 0 seq M + F N + 1
135 16 134 mulneg1d φ N Z K 0 1 N seq M + F N + 1 = 1 N seq M + F N + 1
136 130 132 135 3brtr3d φ N Z K 0 1 N seq M + F N + 2 K + 1 1 N seq M + F N + 1
137 15 133 remulcld φ N Z K 0 1 N seq M + F N + 1
138 137 71 lenegd φ N Z K 0 1 N seq M + F N + 1 1 N seq M + F N + 2 K + 1 1 N seq M + F N + 2 K + 1 1 N seq M + F N + 1
139 136 138 mpbird φ N Z K 0 1 N seq M + F N + 1 1 N seq M + F N + 2 K + 1
140 121 139 eqbrtrrd φ N Z K 0 1 N seq M + F N G N + 1 1 N seq M + F N + 2 K + 1
141 seqp1 N + 2 K M seq M + F N + 2 K + 1 = seq M + F N + 2 K + F N + 2 K + 1
142 33 141 syl φ N Z K 0 seq M + F N + 2 K + 1 = seq M + F N + 2 K + F N + 2 K + 1
143 fveq2 k = N + 2 K + 1 F k = F N + 2 K + 1
144 oveq2 k = N + 2 K + 1 1 k = 1 N + 2 K + 1
145 fveq2 k = N + 2 K + 1 G k = G N + 2 K + 1
146 144 145 oveq12d k = N + 2 K + 1 1 k G k = 1 N + 2 K + 1 G N + 2 K + 1
147 143 146 eqeq12d k = N + 2 K + 1 F k = 1 k G k F N + 2 K + 1 = 1 N + 2 K + 1 G N + 2 K + 1
148 147 81 69 rspcdva φ N Z K 0 F N + 2 K + 1 = 1 N + 2 K + 1 G N + 2 K + 1
149 12 65 sseldi φ N Z K 0 N + 1
150 31 nn0zd φ N Z K 0 2 K
151 expaddz 1 1 0 N + 1 2 K 1 N + 1 + 2 K = 1 N + 1 1 2 K
152 45 10 149 150 151 syl22anc φ N Z K 0 1 N + 1 + 2 K = 1 N + 1 1 2 K
153 29 nn0zd φ N Z K 0 K
154 expmulz 1 1 0 2 K 1 2 K = -1 2 K
155 45 10 106 153 154 syl22anc φ N Z K 0 1 2 K = -1 2 K
156 110 oveq1i -1 2 K = 1 K
157 1exp K 1 K = 1
158 153 157 syl φ N Z K 0 1 K = 1
159 156 158 syl5eq φ N Z K 0 -1 2 K = 1
160 155 159 eqtrd φ N Z K 0 1 2 K = 1
161 89 160 oveq12d φ N Z K 0 1 N + 1 1 2 K = 1 N 1
162 152 161 eqtrd φ N Z K 0 1 N + 1 + 2 K = 1 N 1
163 126 oveq2d φ N Z K 0 1 N + 1 + 2 K = 1 N + 2 K + 1
164 16 negcld φ N Z K 0 1 N
165 164 mulid1d φ N Z K 0 1 N 1 = 1 N
166 162 163 165 3eqtr3d φ N Z K 0 1 N + 2 K + 1 = 1 N
167 166 oveq1d φ N Z K 0 1 N + 2 K + 1 G N + 2 K + 1 = 1 N G N + 2 K + 1
168 63 69 ffvelrnd φ N Z K 0 G N + 2 K + 1
169 168 recnd φ N Z K 0 G N + 2 K + 1
170 16 169 mulneg1d φ N Z K 0 1 N G N + 2 K + 1 = 1 N G N + 2 K + 1
171 148 167 170 3eqtrd φ N Z K 0 F N + 2 K + 1 = 1 N G N + 2 K + 1
172 171 oveq2d φ N Z K 0 seq M + F N + 2 K + F N + 2 K + 1 = seq M + F N + 2 K + 1 N G N + 2 K + 1
173 15 168 remulcld φ N Z K 0 1 N G N + 2 K + 1
174 173 recnd φ N Z K 0 1 N G N + 2 K + 1
175 36 174 negsubd φ N Z K 0 seq M + F N + 2 K + 1 N G N + 2 K + 1 = seq M + F N + 2 K 1 N G N + 2 K + 1
176 142 172 175 3eqtrd φ N Z K 0 seq M + F N + 2 K + 1 = seq M + F N + 2 K 1 N G N + 2 K + 1
177 176 oveq2d φ N Z K 0 1 N seq M + F N + 2 K + 1 = 1 N seq M + F N + 2 K 1 N G N + 2 K + 1
178 16 36 174 subdid φ N Z K 0 1 N seq M + F N + 2 K 1 N G N + 2 K + 1 = 1 N seq M + F N + 2 K 1 N 1 N G N + 2 K + 1
179 115 oveq1d φ N Z K 0 1 N 1 N G N + 2 K + 1 = 1 G N + 2 K + 1
180 16 16 169 mulassd φ N Z K 0 1 N 1 N G N + 2 K + 1 = 1 N 1 N G N + 2 K + 1
181 169 mulid2d φ N Z K 0 1 G N + 2 K + 1 = G N + 2 K + 1
182 179 180 181 3eqtr3d φ N Z K 0 1 N 1 N G N + 2 K + 1 = G N + 2 K + 1
183 182 oveq2d φ N Z K 0 1 N seq M + F N + 2 K 1 N 1 N G N + 2 K + 1 = 1 N seq M + F N + 2 K G N + 2 K + 1
184 177 178 183 3eqtrd φ N Z K 0 1 N seq M + F N + 2 K + 1 = 1 N seq M + F N + 2 K G N + 2 K + 1
185 simp1 φ N Z K 0 φ
186 1 2 3 4 5 iseraltlem1 φ N + 2 K + 1 Z 0 G N + 2 K + 1
187 185 69 186 syl2anc φ N Z K 0 0 G N + 2 K + 1
188 72 168 subge02d φ N Z K 0 0 G N + 2 K + 1 1 N seq M + F N + 2 K G N + 2 K + 1 1 N seq M + F N + 2 K
189 187 188 mpbid φ N Z K 0 1 N seq M + F N + 2 K G N + 2 K + 1 1 N seq M + F N + 2 K
190 184 189 eqbrtrd φ N Z K 0 1 N seq M + F N + 2 K + 1 1 N seq M + F N + 2 K
191 67 71 72 140 190 letrd φ N Z K 0 1 N seq M + F N G N + 1 1 N seq M + F N + 2 K
192 62 66 readdcld φ N Z K 0 1 N seq M + F N + G N + 1
193 1 2 3 4 5 6 iseraltlem2 φ N Z K 0 1 N seq M + F N + 2 K 1 N seq M + F N
194 1 2 3 4 5 iseraltlem1 φ N + 1 Z 0 G N + 1
195 185 65 194 syl2anc φ N Z K 0 0 G N + 1
196 62 66 addge01d φ N Z K 0 0 G N + 1 1 N seq M + F N 1 N seq M + F N + G N + 1
197 195 196 mpbid φ N Z K 0 1 N seq M + F N 1 N seq M + F N + G N + 1
198 72 62 192 193 197 letrd φ N Z K 0 1 N seq M + F N + 2 K 1 N seq M + F N + G N + 1
199 72 62 66 absdifled φ N Z K 0 1 N seq M + F N + 2 K 1 N seq M + F N G N + 1 1 N seq M + F N G N + 1 1 N seq M + F N + 2 K 1 N seq M + F N + 2 K 1 N seq M + F N + G N + 1
200 191 198 199 mpbir2and φ N Z K 0 1 N seq M + F N + 2 K 1 N seq M + F N G N + 1
201 61 200 eqbrtrrd φ N Z K 0 seq M + F N + 2 K seq M + F N G N + 1
202 16 131 38 subdid φ N Z K 0 1 N seq M + F N + 2 K + 1 seq M + F N = 1 N seq M + F N + 2 K + 1 1 N seq M + F N
203 202 fveq2d φ N Z K 0 1 N seq M + F N + 2 K + 1 seq M + F N = 1 N seq M + F N + 2 K + 1 1 N seq M + F N
204 70 37 resubcld φ N Z K 0 seq M + F N + 2 K + 1 seq M + F N
205 204 recnd φ N Z K 0 seq M + F N + 2 K + 1 seq M + F N
206 16 205 absmuld φ N Z K 0 1 N seq M + F N + 2 K + 1 seq M + F N = 1 N seq M + F N + 2 K + 1 seq M + F N
207 203 206 eqtr3d φ N Z K 0 1 N seq M + F N + 2 K + 1 1 N seq M + F N = 1 N seq M + F N + 2 K + 1 seq M + F N
208 56 oveq1d φ N Z K 0 1 N seq M + F N + 2 K + 1 seq M + F N = 1 seq M + F N + 2 K + 1 seq M + F N
209 205 abscld φ N Z K 0 seq M + F N + 2 K + 1 seq M + F N
210 209 recnd φ N Z K 0 seq M + F N + 2 K + 1 seq M + F N
211 210 mulid2d φ N Z K 0 1 seq M + F N + 2 K + 1 seq M + F N = seq M + F N + 2 K + 1 seq M + F N
212 207 208 211 3eqtrd φ N Z K 0 1 N seq M + F N + 2 K + 1 1 N seq M + F N = seq M + F N + 2 K + 1 seq M + F N
213 71 72 192 190 198 letrd φ N Z K 0 1 N seq M + F N + 2 K + 1 1 N seq M + F N + G N + 1
214 71 62 66 absdifled φ N Z K 0 1 N seq M + F N + 2 K + 1 1 N seq M + F N G N + 1 1 N seq M + F N G N + 1 1 N seq M + F N + 2 K + 1 1 N seq M + F N + 2 K + 1 1 N seq M + F N + G N + 1
215 140 213 214 mpbir2and φ N Z K 0 1 N seq M + F N + 2 K + 1 1 N seq M + F N G N + 1
216 212 215 eqbrtrrd φ N Z K 0 seq M + F N + 2 K + 1 seq M + F N G N + 1
217 201 216 jca φ N Z K 0 seq M + F N + 2 K seq M + F N G N + 1 seq M + F N + 2 K + 1 seq M + F N G N + 1