Metamath Proof Explorer


Theorem isercoll

Description: Rearrange an infinite series by spacing out the terms using an order isomorphism. (Contributed by Mario Carneiro, 6-Apr-2015)

Ref Expression
Hypotheses isercoll.z Z = M
isercoll.m φ M
isercoll.g φ G : Z
isercoll.i φ k G k < G k + 1
isercoll.0 φ n Z ran G F n = 0
isercoll.f φ n Z F n
isercoll.h φ k H k = F G k
Assertion isercoll φ seq 1 + H A seq M + F A

Proof

Step Hyp Ref Expression
1 isercoll.z Z = M
2 isercoll.m φ M
3 isercoll.g φ G : Z
4 isercoll.i φ k G k < G k + 1
5 isercoll.0 φ n Z ran G F n = 0
6 isercoll.f φ n Z F n
7 isercoll.h φ k H k = F G k
8 uzssz M
9 1 8 eqsstri Z
10 3 ffvelrnda φ n G n Z
11 9 10 sselid φ n G n
12 nnz n n
13 12 ad2antlr φ n m G n n
14 fzfid φ n m G n M m Fin
15 ffun G : Z Fun G
16 funimacnv Fun G G G -1 M m = M m ran G
17 3 15 16 3syl φ G G -1 M m = M m ran G
18 inss1 M m ran G M m
19 17 18 eqsstrdi φ G G -1 M m M m
20 19 ad2antrr φ n m G n G G -1 M m M m
21 14 20 ssfid φ n m G n G G -1 M m Fin
22 hashcl G G -1 M m Fin G G -1 M m 0
23 nn0z G G -1 M m 0 G G -1 M m
24 21 22 23 3syl φ n m G n G G -1 M m
25 ssid
26 1 2 3 4 isercolllem1 φ G Isom < , < G
27 25 26 mpan2 φ G Isom < , < G
28 ffn G : Z G Fn
29 fnresdm G Fn G = G
30 isoeq1 G = G G Isom < , < G G Isom < , < G
31 3 28 29 30 4syl φ G Isom < , < G G Isom < , < G
32 27 31 mpbid φ G Isom < , < G
33 isof1o G Isom < , < G G : 1-1 onto G
34 f1ocnv G : 1-1 onto G G -1 : G 1-1 onto
35 f1ofun G -1 : G 1-1 onto Fun G -1
36 32 33 34 35 4syl φ Fun G -1
37 df-f1 G : 1-1 Z G : Z Fun G -1
38 3 36 37 sylanbrc φ G : 1-1 Z
39 38 ad2antrr φ n m G n G : 1-1 Z
40 fz1ssnn 1 n
41 ovex 1 n V
42 41 f1imaen G : 1-1 Z 1 n G 1 n 1 n
43 39 40 42 sylancl φ n m G n G 1 n 1 n
44 fzfid φ n m G n 1 n Fin
45 enfii 1 n Fin G 1 n 1 n G 1 n Fin
46 44 43 45 syl2anc φ n m G n G 1 n Fin
47 hashen G 1 n Fin 1 n Fin G 1 n = 1 n G 1 n 1 n
48 46 44 47 syl2anc φ n m G n G 1 n = 1 n G 1 n 1 n
49 43 48 mpbird φ n m G n G 1 n = 1 n
50 nnnn0 n n 0
51 50 ad2antlr φ n m G n n 0
52 hashfz1 n 0 1 n = n
53 51 52 syl φ n m G n 1 n = n
54 49 53 eqtrd φ n m G n G 1 n = n
55 elfznn y 1 n y
56 55 adantl φ n m G n y 1 n y
57 zssre
58 9 57 sstri Z
59 3 ad2antrr φ n m G n G : Z
60 ffvelrn G : Z y G y Z
61 59 55 60 syl2an φ n m G n y 1 n G y Z
62 58 61 sselid φ n m G n y 1 n G y
63 10 ad2antrr φ n m G n y 1 n G n Z
64 58 63 sselid φ n m G n y 1 n G n
65 eluzelz m G n m
66 65 ad2antlr φ n m G n y 1 n m
67 66 zred φ n m G n y 1 n m
68 elfzle2 y 1 n y n
69 68 adantl φ n m G n y 1 n y n
70 32 ad3antrrr φ n m G n y 1 n G Isom < , < G
71 simpllr φ n m G n y 1 n n
72 isorel G Isom < , < G n y n < y G n < G y
73 70 71 56 72 syl12anc φ n m G n y 1 n n < y G n < G y
74 73 notbid φ n m G n y 1 n ¬ n < y ¬ G n < G y
75 56 nnred φ n m G n y 1 n y
76 71 nnred φ n m G n y 1 n n
77 75 76 lenltd φ n m G n y 1 n y n ¬ n < y
78 62 64 lenltd φ n m G n y 1 n G y G n ¬ G n < G y
79 74 77 78 3bitr4d φ n m G n y 1 n y n G y G n
80 69 79 mpbid φ n m G n y 1 n G y G n
81 eluzle m G n G n m
82 81 ad2antlr φ n m G n y 1 n G n m
83 62 64 67 80 82 letrd φ n m G n y 1 n G y m
84 61 1 eleqtrdi φ n m G n y 1 n G y M
85 elfz5 G y M m G y M m G y m
86 84 66 85 syl2anc φ n m G n y 1 n G y M m G y m
87 83 86 mpbird φ n m G n y 1 n G y M m
88 59 ffnd φ n m G n G Fn
89 88 adantr φ n m G n y 1 n G Fn
90 elpreima G Fn y G -1 M m y G y M m
91 89 90 syl φ n m G n y 1 n y G -1 M m y G y M m
92 56 87 91 mpbir2and φ n m G n y 1 n y G -1 M m
93 92 ex φ n m G n y 1 n y G -1 M m
94 93 ssrdv φ n m G n 1 n G -1 M m
95 imass2 1 n G -1 M m G 1 n G G -1 M m
96 94 95 syl φ n m G n G 1 n G G -1 M m
97 ssdomg G G -1 M m Fin G 1 n G G -1 M m G 1 n G G -1 M m
98 21 96 97 sylc φ n m G n G 1 n G G -1 M m
99 hashdom G 1 n Fin G G -1 M m Fin G 1 n G G -1 M m G 1 n G G -1 M m
100 46 21 99 syl2anc φ n m G n G 1 n G G -1 M m G 1 n G G -1 M m
101 98 100 mpbird φ n m G n G 1 n G G -1 M m
102 54 101 eqbrtrrd φ n m G n n G G -1 M m
103 eluz2 G G -1 M m n n G G -1 M m n G G -1 M m
104 13 24 102 103 syl3anbrc φ n m G n G G -1 M m n
105 fveq2 k = G G -1 M m seq 1 + H k = seq 1 + H G G -1 M m
106 105 eleq1d k = G G -1 M m seq 1 + H k seq 1 + H G G -1 M m
107 105 fvoveq1d k = G G -1 M m seq 1 + H k A = seq 1 + H G G -1 M m A
108 107 breq1d k = G G -1 M m seq 1 + H k A < x seq 1 + H G G -1 M m A < x
109 106 108 anbi12d k = G G -1 M m seq 1 + H k seq 1 + H k A < x seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x
110 109 rspcv G G -1 M m n k n seq 1 + H k seq 1 + H k A < x seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x
111 104 110 syl φ n m G n k n seq 1 + H k seq 1 + H k A < x seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x
112 111 ralrimdva φ n k n seq 1 + H k seq 1 + H k A < x m G n seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x
113 fveq2 j = G n j = G n
114 113 raleqdv j = G n m j seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x m G n seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x
115 114 rspcev G n m G n seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x j m j seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x
116 11 112 115 syl6an φ n k n seq 1 + H k seq 1 + H k A < x j m j seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x
117 116 rexlimdva φ n k n seq 1 + H k seq 1 + H k A < x j m j seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x
118 1nn 1
119 ffvelrn G : Z 1 G 1 Z
120 3 118 119 sylancl φ G 1 Z
121 120 1 eleqtrdi φ G 1 M
122 eluzelz G 1 M G 1
123 eqid G 1 = G 1
124 123 rexuz3 G 1 j G 1 m j seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x j m j seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x
125 121 122 124 3syl φ j G 1 m j seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x j m j seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x
126 117 125 sylibrd φ n k n seq 1 + H k seq 1 + H k A < x j G 1 m j seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x
127 fzfid φ j G 1 M j Fin
128 funimacnv Fun G G G -1 M j = M j ran G
129 3 15 128 3syl φ G G -1 M j = M j ran G
130 inss1 M j ran G M j
131 129 130 eqsstrdi φ G G -1 M j M j
132 131 adantr φ j G 1 G G -1 M j M j
133 127 132 ssfid φ j G 1 G G -1 M j Fin
134 hashcl G G -1 M j Fin G G -1 M j 0
135 nn0p1nn G G -1 M j 0 G G -1 M j + 1
136 133 134 135 3syl φ j G 1 G G -1 M j + 1
137 eluzle k G G -1 M j + 1 G G -1 M j + 1 k
138 137 adantl φ j G 1 k G G -1 M j + 1 G G -1 M j + 1 k
139 133 adantr φ j G 1 k G G -1 M j + 1 G G -1 M j Fin
140 nn0z G G -1 M j 0 G G -1 M j
141 139 134 140 3syl φ j G 1 k G G -1 M j + 1 G G -1 M j
142 eluzelz k G G -1 M j + 1 k
143 142 adantl φ j G 1 k G G -1 M j + 1 k
144 zltp1le G G -1 M j k G G -1 M j < k G G -1 M j + 1 k
145 141 143 144 syl2anc φ j G 1 k G G -1 M j + 1 G G -1 M j < k G G -1 M j + 1 k
146 138 145 mpbird φ j G 1 k G G -1 M j + 1 G G -1 M j < k
147 nn0re G G -1 M j 0 G G -1 M j
148 133 134 147 3syl φ j G 1 G G -1 M j
149 148 adantr φ j G 1 k G G -1 M j + 1 G G -1 M j
150 eluznn G G -1 M j + 1 k G G -1 M j + 1 k
151 136 150 sylan φ j G 1 k G G -1 M j + 1 k
152 151 nnred φ j G 1 k G G -1 M j + 1 k
153 149 152 ltnled φ j G 1 k G G -1 M j + 1 G G -1 M j < k ¬ k G G -1 M j
154 146 153 mpbid φ j G 1 k G G -1 M j + 1 ¬ k G G -1 M j
155 fzss2 j G k M G k M j
156 imass2 M G k M j G -1 M G k G -1 M j
157 imass2 G -1 M G k G -1 M j G G -1 M G k G G -1 M j
158 155 156 157 3syl j G k G G -1 M G k G G -1 M j
159 ssdomg G G -1 M j Fin G 1 k G G -1 M j G 1 k G G -1 M j
160 139 159 syl φ j G 1 k G G -1 M j + 1 G 1 k G G -1 M j G 1 k G G -1 M j
161 3 ad2antrr φ j G 1 k G G -1 M j + 1 G : Z
162 161 ffvelrnda φ j G 1 k G G -1 M j + 1 x G x Z
163 162 1 eleqtrdi φ j G 1 k G G -1 M j + 1 x G x M
164 161 151 ffvelrnd φ j G 1 k G G -1 M j + 1 G k Z
165 9 164 sselid φ j G 1 k G G -1 M j + 1 G k
166 165 adantr φ j G 1 k G G -1 M j + 1 x G k
167 elfz5 G x M G k G x M G k G x G k
168 163 166 167 syl2anc φ j G 1 k G G -1 M j + 1 x G x M G k G x G k
169 32 ad3antrrr φ j G 1 k G G -1 M j + 1 x G Isom < , < G
170 nnssre
171 ressxr *
172 170 171 sstri *
173 172 a1i φ j G 1 k G G -1 M j + 1 x *
174 imassrn G ran G
175 161 adantr φ j G 1 k G G -1 M j + 1 x G : Z
176 175 frnd φ j G 1 k G G -1 M j + 1 x ran G Z
177 176 58 sstrdi φ j G 1 k G G -1 M j + 1 x ran G
178 174 177 sstrid φ j G 1 k G G -1 M j + 1 x G
179 178 171 sstrdi φ j G 1 k G G -1 M j + 1 x G *
180 simpr φ j G 1 k G G -1 M j + 1 x x
181 151 adantr φ j G 1 k G G -1 M j + 1 x k
182 leisorel G Isom < , < G * G * x k x k G x G k
183 169 173 179 180 181 182 syl122anc φ j G 1 k G G -1 M j + 1 x x k G x G k
184 168 183 bitr4d φ j G 1 k G G -1 M j + 1 x G x M G k x k
185 184 pm5.32da φ j G 1 k G G -1 M j + 1 x G x M G k x x k
186 elpreima G Fn x G -1 M G k x G x M G k
187 161 28 186 3syl φ j G 1 k G G -1 M j + 1 x G -1 M G k x G x M G k
188 fznn k x 1 k x x k
189 143 188 syl φ j G 1 k G G -1 M j + 1 x 1 k x x k
190 185 187 189 3bitr4d φ j G 1 k G G -1 M j + 1 x G -1 M G k x 1 k
191 190 eqrdv φ j G 1 k G G -1 M j + 1 G -1 M G k = 1 k
192 191 imaeq2d φ j G 1 k G G -1 M j + 1 G G -1 M G k = G 1 k
193 192 sseq1d φ j G 1 k G G -1 M j + 1 G G -1 M G k G G -1 M j G 1 k G G -1 M j
194 38 ad2antrr φ j G 1 k G G -1 M j + 1 G : 1-1 Z
195 fz1ssnn 1 k
196 ovex 1 k V
197 196 f1imaen G : 1-1 Z 1 k G 1 k 1 k
198 194 195 197 sylancl φ j G 1 k G G -1 M j + 1 G 1 k 1 k
199 fzfid φ j G 1 k G G -1 M j + 1 1 k Fin
200 enfii 1 k Fin G 1 k 1 k G 1 k Fin
201 199 198 200 syl2anc φ j G 1 k G G -1 M j + 1 G 1 k Fin
202 hashen G 1 k Fin 1 k Fin G 1 k = 1 k G 1 k 1 k
203 201 199 202 syl2anc φ j G 1 k G G -1 M j + 1 G 1 k = 1 k G 1 k 1 k
204 198 203 mpbird φ j G 1 k G G -1 M j + 1 G 1 k = 1 k
205 nnnn0 k k 0
206 hashfz1 k 0 1 k = k
207 151 205 206 3syl φ j G 1 k G G -1 M j + 1 1 k = k
208 204 207 eqtrd φ j G 1 k G G -1 M j + 1 G 1 k = k
209 208 breq1d φ j G 1 k G G -1 M j + 1 G 1 k G G -1 M j k G G -1 M j
210 hashdom G 1 k Fin G G -1 M j Fin G 1 k G G -1 M j G 1 k G G -1 M j
211 201 139 210 syl2anc φ j G 1 k G G -1 M j + 1 G 1 k G G -1 M j G 1 k G G -1 M j
212 209 211 bitr3d φ j G 1 k G G -1 M j + 1 k G G -1 M j G 1 k G G -1 M j
213 160 193 212 3imtr4d φ j G 1 k G G -1 M j + 1 G G -1 M G k G G -1 M j k G G -1 M j
214 158 213 syl5 φ j G 1 k G G -1 M j + 1 j G k k G G -1 M j
215 154 214 mtod φ j G 1 k G G -1 M j + 1 ¬ j G k
216 eluzelz j G 1 j
217 216 ad2antlr φ j G 1 k G G -1 M j + 1 j
218 uztric G k j j G k G k j
219 165 217 218 syl2anc φ j G 1 k G G -1 M j + 1 j G k G k j
220 219 ord φ j G 1 k G G -1 M j + 1 ¬ j G k G k j
221 215 220 mpd φ j G 1 k G G -1 M j + 1 G k j
222 oveq2 m = G k M m = M G k
223 222 imaeq2d m = G k G -1 M m = G -1 M G k
224 223 imaeq2d m = G k G G -1 M m = G G -1 M G k
225 224 fveq2d m = G k G G -1 M m = G G -1 M G k
226 225 fveq2d m = G k seq 1 + H G G -1 M m = seq 1 + H G G -1 M G k
227 226 eleq1d m = G k seq 1 + H G G -1 M m seq 1 + H G G -1 M G k
228 226 fvoveq1d m = G k seq 1 + H G G -1 M m A = seq 1 + H G G -1 M G k A
229 228 breq1d m = G k seq 1 + H G G -1 M m A < x seq 1 + H G G -1 M G k A < x
230 227 229 anbi12d m = G k seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x seq 1 + H G G -1 M G k seq 1 + H G G -1 M G k A < x
231 230 rspcv G k j m j seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x seq 1 + H G G -1 M G k seq 1 + H G G -1 M G k A < x
232 221 231 syl φ j G 1 k G G -1 M j + 1 m j seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x seq 1 + H G G -1 M G k seq 1 + H G G -1 M G k A < x
233 192 fveq2d φ j G 1 k G G -1 M j + 1 G G -1 M G k = G 1 k
234 233 208 eqtrd φ j G 1 k G G -1 M j + 1 G G -1 M G k = k
235 234 fveq2d φ j G 1 k G G -1 M j + 1 seq 1 + H G G -1 M G k = seq 1 + H k
236 235 eleq1d φ j G 1 k G G -1 M j + 1 seq 1 + H G G -1 M G k seq 1 + H k
237 235 fvoveq1d φ j G 1 k G G -1 M j + 1 seq 1 + H G G -1 M G k A = seq 1 + H k A
238 237 breq1d φ j G 1 k G G -1 M j + 1 seq 1 + H G G -1 M G k A < x seq 1 + H k A < x
239 236 238 anbi12d φ j G 1 k G G -1 M j + 1 seq 1 + H G G -1 M G k seq 1 + H G G -1 M G k A < x seq 1 + H k seq 1 + H k A < x
240 232 239 sylibd φ j G 1 k G G -1 M j + 1 m j seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x seq 1 + H k seq 1 + H k A < x
241 240 ralrimdva φ j G 1 m j seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x k G G -1 M j + 1 seq 1 + H k seq 1 + H k A < x
242 fveq2 n = G G -1 M j + 1 n = G G -1 M j + 1
243 242 raleqdv n = G G -1 M j + 1 k n seq 1 + H k seq 1 + H k A < x k G G -1 M j + 1 seq 1 + H k seq 1 + H k A < x
244 243 rspcev G G -1 M j + 1 k G G -1 M j + 1 seq 1 + H k seq 1 + H k A < x n k n seq 1 + H k seq 1 + H k A < x
245 136 241 244 syl6an φ j G 1 m j seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x n k n seq 1 + H k seq 1 + H k A < x
246 245 rexlimdva φ j G 1 m j seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x n k n seq 1 + H k seq 1 + H k A < x
247 126 246 impbid φ n k n seq 1 + H k seq 1 + H k A < x j G 1 m j seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x
248 247 ralbidv φ x + n k n seq 1 + H k seq 1 + H k A < x x + j G 1 m j seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x
249 248 anbi2d φ A x + n k n seq 1 + H k seq 1 + H k A < x A x + j G 1 m j seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x
250 nnuz = 1
251 1zzd φ 1
252 seqex seq 1 + H V
253 252 a1i φ seq 1 + H V
254 eqidd φ k seq 1 + H k = seq 1 + H k
255 250 251 253 254 clim2 φ seq 1 + H A A x + n k n seq 1 + H k seq 1 + H k A < x
256 121 122 syl φ G 1
257 seqex seq M + F V
258 257 a1i φ seq M + F V
259 1 2 3 4 5 6 7 isercolllem3 φ m G 1 seq M + F m = seq 1 + H G G -1 M m
260 123 256 258 259 clim2 φ seq M + F A A x + j G 1 m j seq 1 + H G G -1 M m seq 1 + H G G -1 M m A < x
261 249 255 260 3bitr4d φ seq 1 + H A seq M + F A