Step |
Hyp |
Ref |
Expression |
1 |
|
isercoll.z |
|
2 |
|
isercoll.m |
|
3 |
|
isercoll.g |
|
4 |
|
isercoll.i |
|
5 |
|
elfznn |
|
6 |
5
|
a1i |
|
7 |
|
cnvimass |
|
8 |
3
|
adantr |
|
9 |
7 8
|
fssdm |
|
10 |
9
|
sseld |
|
11 |
|
id |
|
12 |
|
nnuz |
|
13 |
11 12
|
eleqtrdi |
|
14 |
|
ltso |
|
15 |
14
|
a1i |
|
16 |
|
fzfid |
|
17 |
|
ffun |
|
18 |
|
funimacnv |
|
19 |
8 17 18
|
3syl |
|
20 |
|
inss1 |
|
21 |
19 20
|
eqsstrdi |
|
22 |
16 21
|
ssfid |
|
23 |
|
ssid |
|
24 |
1 2 3 4
|
isercolllem1 |
|
25 |
23 24
|
mpan2 |
|
26 |
|
ffn |
|
27 |
|
fnresdm |
|
28 |
|
isoeq1 |
|
29 |
3 26 27 28
|
4syl |
|
30 |
25 29
|
mpbid |
|
31 |
|
isof1o |
|
32 |
|
f1ocnv |
|
33 |
|
f1ofun |
|
34 |
30 31 32 33
|
4syl |
|
35 |
|
df-f1 |
|
36 |
3 34 35
|
sylanbrc |
|
37 |
36
|
adantr |
|
38 |
|
nnex |
|
39 |
|
ssexg |
|
40 |
9 38 39
|
sylancl |
|
41 |
|
f1imaeng |
|
42 |
37 9 40 41
|
syl3anc |
|
43 |
42
|
ensymd |
|
44 |
|
enfii |
|
45 |
22 43 44
|
syl2anc |
|
46 |
|
1nn |
|
47 |
46
|
a1i |
|
48 |
|
ffvelrn |
|
49 |
3 46 48
|
sylancl |
|
50 |
49 1
|
eleqtrdi |
|
51 |
50
|
adantr |
|
52 |
|
simpr |
|
53 |
|
elfzuzb |
|
54 |
51 52 53
|
sylanbrc |
|
55 |
8
|
ffnd |
|
56 |
|
elpreima |
|
57 |
55 56
|
syl |
|
58 |
47 54 57
|
mpbir2and |
|
59 |
58
|
ne0d |
|
60 |
|
nnssre |
|
61 |
9 60
|
sstrdi |
|
62 |
|
fisupcl |
|
63 |
15 45 59 61 62
|
syl13anc |
|
64 |
9 63
|
sseldd |
|
65 |
64
|
nnzd |
|
66 |
|
elfz5 |
|
67 |
13 65 66
|
syl2anr |
|
68 |
|
elpreima |
|
69 |
55 68
|
syl |
|
70 |
63 69
|
mpbid |
|
71 |
|
elfzle2 |
|
72 |
70 71
|
simpl2im |
|
73 |
72
|
adantr |
|
74 |
|
uzssz |
|
75 |
1 74
|
eqsstri |
|
76 |
|
zssre |
|
77 |
75 76
|
sstri |
|
78 |
8
|
ffvelrnda |
|
79 |
77 78
|
sselid |
|
80 |
8 64
|
ffvelrnd |
|
81 |
80
|
adantr |
|
82 |
77 81
|
sselid |
|
83 |
|
eluzelz |
|
84 |
83
|
ad2antlr |
|
85 |
76 84
|
sselid |
|
86 |
|
letr |
|
87 |
79 82 85 86
|
syl3anc |
|
88 |
73 87
|
mpan2d |
|
89 |
30
|
ad2antrr |
|
90 |
60
|
a1i |
|
91 |
|
ressxr |
|
92 |
90 91
|
sstrdi |
|
93 |
|
imassrn |
|
94 |
3
|
ad2antrr |
|
95 |
94
|
frnd |
|
96 |
93 95
|
sstrid |
|
97 |
96 77
|
sstrdi |
|
98 |
97 91
|
sstrdi |
|
99 |
|
simpr |
|
100 |
64
|
adantr |
|
101 |
|
leisorel |
|
102 |
89 92 98 99 100 101
|
syl122anc |
|
103 |
78 1
|
eleqtrdi |
|
104 |
|
elfz5 |
|
105 |
103 84 104
|
syl2anc |
|
106 |
88 102 105
|
3imtr4d |
|
107 |
|
elpreima |
|
108 |
107
|
baibd |
|
109 |
55 108
|
sylan |
|
110 |
106 109
|
sylibrd |
|
111 |
|
fimaxre2 |
|
112 |
61 45 111
|
syl2anc |
|
113 |
|
suprub |
|
114 |
113
|
ex |
|
115 |
61 59 112 114
|
syl3anc |
|
116 |
115
|
adantr |
|
117 |
110 116
|
impbid |
|
118 |
67 117
|
bitrd |
|
119 |
118
|
ex |
|
120 |
6 10 119
|
pm5.21ndd |
|
121 |
120
|
eqrdv |
|
122 |
121
|
fveq2d |
|
123 |
64
|
nnnn0d |
|
124 |
|
hashfz1 |
|
125 |
123 124
|
syl |
|
126 |
|
hashen |
|
127 |
45 22 126
|
syl2anc |
|
128 |
43 127
|
mpbird |
|
129 |
122 125 128
|
3eqtr3d |
|
130 |
129
|
oveq2d |
|
131 |
130 121
|
eqtr3d |
|