Metamath Proof Explorer


Theorem isercolllem2

Description: Lemma for isercoll . (Contributed by Mario Carneiro, 6-Apr-2015)

Ref Expression
Hypotheses isercoll.z Z = M
isercoll.m φ M
isercoll.g φ G : Z
isercoll.i φ k G k < G k + 1
Assertion isercolllem2 φ N G 1 1 G G -1 M N = G -1 M N

Proof

Step Hyp Ref Expression
1 isercoll.z Z = M
2 isercoll.m φ M
3 isercoll.g φ G : Z
4 isercoll.i φ k G k < G k + 1
5 elfznn x 1 sup G -1 M N < x
6 5 a1i φ N G 1 x 1 sup G -1 M N < x
7 cnvimass G -1 M N dom G
8 3 adantr φ N G 1 G : Z
9 7 8 fssdm φ N G 1 G -1 M N
10 9 sseld φ N G 1 x G -1 M N x
11 id x x
12 nnuz = 1
13 11 12 eleqtrdi x x 1
14 ltso < Or
15 14 a1i φ N G 1 < Or
16 fzfid φ N G 1 M N Fin
17 ffun G : Z Fun G
18 funimacnv Fun G G G -1 M N = M N ran G
19 8 17 18 3syl φ N G 1 G G -1 M N = M N ran G
20 inss1 M N ran G M N
21 19 20 eqsstrdi φ N G 1 G G -1 M N M N
22 16 21 ssfid φ N G 1 G G -1 M N Fin
23 ssid
24 1 2 3 4 isercolllem1 φ G Isom < , < G
25 23 24 mpan2 φ G Isom < , < G
26 ffn G : Z G Fn
27 fnresdm G Fn G = G
28 isoeq1 G = G G Isom < , < G G Isom < , < G
29 3 26 27 28 4syl φ G Isom < , < G G Isom < , < G
30 25 29 mpbid φ G Isom < , < G
31 isof1o G Isom < , < G G : 1-1 onto G
32 f1ocnv G : 1-1 onto G G -1 : G 1-1 onto
33 f1ofun G -1 : G 1-1 onto Fun G -1
34 30 31 32 33 4syl φ Fun G -1
35 df-f1 G : 1-1 Z G : Z Fun G -1
36 3 34 35 sylanbrc φ G : 1-1 Z
37 36 adantr φ N G 1 G : 1-1 Z
38 nnex V
39 ssexg G -1 M N V G -1 M N V
40 9 38 39 sylancl φ N G 1 G -1 M N V
41 f1imaeng G : 1-1 Z G -1 M N G -1 M N V G G -1 M N G -1 M N
42 37 9 40 41 syl3anc φ N G 1 G G -1 M N G -1 M N
43 42 ensymd φ N G 1 G -1 M N G G -1 M N
44 enfii G G -1 M N Fin G -1 M N G G -1 M N G -1 M N Fin
45 22 43 44 syl2anc φ N G 1 G -1 M N Fin
46 1nn 1
47 46 a1i φ N G 1 1
48 ffvelrn G : Z 1 G 1 Z
49 3 46 48 sylancl φ G 1 Z
50 49 1 eleqtrdi φ G 1 M
51 50 adantr φ N G 1 G 1 M
52 simpr φ N G 1 N G 1
53 elfzuzb G 1 M N G 1 M N G 1
54 51 52 53 sylanbrc φ N G 1 G 1 M N
55 8 ffnd φ N G 1 G Fn
56 elpreima G Fn 1 G -1 M N 1 G 1 M N
57 55 56 syl φ N G 1 1 G -1 M N 1 G 1 M N
58 47 54 57 mpbir2and φ N G 1 1 G -1 M N
59 58 ne0d φ N G 1 G -1 M N
60 nnssre
61 9 60 sstrdi φ N G 1 G -1 M N
62 fisupcl < Or G -1 M N Fin G -1 M N G -1 M N sup G -1 M N < G -1 M N
63 15 45 59 61 62 syl13anc φ N G 1 sup G -1 M N < G -1 M N
64 9 63 sseldd φ N G 1 sup G -1 M N <
65 64 nnzd φ N G 1 sup G -1 M N <
66 elfz5 x 1 sup G -1 M N < x 1 sup G -1 M N < x sup G -1 M N <
67 13 65 66 syl2anr φ N G 1 x x 1 sup G -1 M N < x sup G -1 M N <
68 elpreima G Fn sup G -1 M N < G -1 M N sup G -1 M N < G sup G -1 M N < M N
69 55 68 syl φ N G 1 sup G -1 M N < G -1 M N sup G -1 M N < G sup G -1 M N < M N
70 63 69 mpbid φ N G 1 sup G -1 M N < G sup G -1 M N < M N
71 elfzle2 G sup G -1 M N < M N G sup G -1 M N < N
72 70 71 simpl2im φ N G 1 G sup G -1 M N < N
73 72 adantr φ N G 1 x G sup G -1 M N < N
74 uzssz M
75 1 74 eqsstri Z
76 zssre
77 75 76 sstri Z
78 8 ffvelrnda φ N G 1 x G x Z
79 77 78 sselid φ N G 1 x G x
80 8 64 ffvelrnd φ N G 1 G sup G -1 M N < Z
81 80 adantr φ N G 1 x G sup G -1 M N < Z
82 77 81 sselid φ N G 1 x G sup G -1 M N <
83 eluzelz N G 1 N
84 83 ad2antlr φ N G 1 x N
85 76 84 sselid φ N G 1 x N
86 letr G x G sup G -1 M N < N G x G sup G -1 M N < G sup G -1 M N < N G x N
87 79 82 85 86 syl3anc φ N G 1 x G x G sup G -1 M N < G sup G -1 M N < N G x N
88 73 87 mpan2d φ N G 1 x G x G sup G -1 M N < G x N
89 30 ad2antrr φ N G 1 x G Isom < , < G
90 60 a1i φ N G 1 x
91 ressxr *
92 90 91 sstrdi φ N G 1 x *
93 imassrn G ran G
94 3 ad2antrr φ N G 1 x G : Z
95 94 frnd φ N G 1 x ran G Z
96 93 95 sstrid φ N G 1 x G Z
97 96 77 sstrdi φ N G 1 x G
98 97 91 sstrdi φ N G 1 x G *
99 simpr φ N G 1 x x
100 64 adantr φ N G 1 x sup G -1 M N <
101 leisorel G Isom < , < G * G * x sup G -1 M N < x sup G -1 M N < G x G sup G -1 M N <
102 89 92 98 99 100 101 syl122anc φ N G 1 x x sup G -1 M N < G x G sup G -1 M N <
103 78 1 eleqtrdi φ N G 1 x G x M
104 elfz5 G x M N G x M N G x N
105 103 84 104 syl2anc φ N G 1 x G x M N G x N
106 88 102 105 3imtr4d φ N G 1 x x sup G -1 M N < G x M N
107 elpreima G Fn x G -1 M N x G x M N
108 107 baibd G Fn x x G -1 M N G x M N
109 55 108 sylan φ N G 1 x x G -1 M N G x M N
110 106 109 sylibrd φ N G 1 x x sup G -1 M N < x G -1 M N
111 fimaxre2 G -1 M N G -1 M N Fin x y G -1 M N y x
112 61 45 111 syl2anc φ N G 1 x y G -1 M N y x
113 suprub G -1 M N G -1 M N x y G -1 M N y x x G -1 M N x sup G -1 M N <
114 113 ex G -1 M N G -1 M N x y G -1 M N y x x G -1 M N x sup G -1 M N <
115 61 59 112 114 syl3anc φ N G 1 x G -1 M N x sup G -1 M N <
116 115 adantr φ N G 1 x x G -1 M N x sup G -1 M N <
117 110 116 impbid φ N G 1 x x sup G -1 M N < x G -1 M N
118 67 117 bitrd φ N G 1 x x 1 sup G -1 M N < x G -1 M N
119 118 ex φ N G 1 x x 1 sup G -1 M N < x G -1 M N
120 6 10 119 pm5.21ndd φ N G 1 x 1 sup G -1 M N < x G -1 M N
121 120 eqrdv φ N G 1 1 sup G -1 M N < = G -1 M N
122 121 fveq2d φ N G 1 1 sup G -1 M N < = G -1 M N
123 64 nnnn0d φ N G 1 sup G -1 M N < 0
124 hashfz1 sup G -1 M N < 0 1 sup G -1 M N < = sup G -1 M N <
125 123 124 syl φ N G 1 1 sup G -1 M N < = sup G -1 M N <
126 hashen G -1 M N Fin G G -1 M N Fin G -1 M N = G G -1 M N G -1 M N G G -1 M N
127 45 22 126 syl2anc φ N G 1 G -1 M N = G G -1 M N G -1 M N G G -1 M N
128 43 127 mpbird φ N G 1 G -1 M N = G G -1 M N
129 122 125 128 3eqtr3d φ N G 1 sup G -1 M N < = G G -1 M N
130 129 oveq2d φ N G 1 1 sup G -1 M N < = 1 G G -1 M N
131 130 121 eqtr3d φ N G 1 1 G G -1 M N = G -1 M N