Metamath Proof Explorer


Theorem iserex

Description: An infinite series converges, if and only if the series does with initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 27-Apr-2014)

Ref Expression
Hypotheses clim2ser.1 Z = M
iserex.2 φ N Z
iserex.3 φ k Z F k
Assertion iserex φ seq M + F dom seq N + F dom

Proof

Step Hyp Ref Expression
1 clim2ser.1 Z = M
2 iserex.2 φ N Z
3 iserex.3 φ k Z F k
4 seqeq1 N = M seq N + F = seq M + F
5 4 eleq1d N = M seq N + F dom seq M + F dom
6 5 bicomd N = M seq M + F dom seq N + F dom
7 6 a1i φ N = M seq M + F dom seq N + F dom
8 simpll φ N 1 M seq M + F dom φ
9 2 1 eleqtrdi φ N M
10 eluzelz N M N
11 9 10 syl φ N
12 11 zcnd φ N
13 ax-1cn 1
14 npcan N 1 N - 1 + 1 = N
15 12 13 14 sylancl φ N - 1 + 1 = N
16 15 seqeq1d φ seq N - 1 + 1 + F = seq N + F
17 8 16 syl φ N 1 M seq M + F dom seq N - 1 + 1 + F = seq N + F
18 simplr φ N 1 M seq M + F dom N 1 M
19 18 1 eleqtrrdi φ N 1 M seq M + F dom N 1 Z
20 8 3 sylan φ N 1 M seq M + F dom k Z F k
21 simpr φ N 1 M seq M + F dom seq M + F dom
22 climdm seq M + F dom seq M + F seq M + F
23 21 22 sylib φ N 1 M seq M + F dom seq M + F seq M + F
24 1 19 20 23 clim2ser φ N 1 M seq M + F dom seq N - 1 + 1 + F seq M + F seq M + F N 1
25 17 24 eqbrtrrd φ N 1 M seq M + F dom seq N + F seq M + F seq M + F N 1
26 climrel Rel
27 26 releldmi seq N + F seq M + F seq M + F N 1 seq N + F dom
28 25 27 syl φ N 1 M seq M + F dom seq N + F dom
29 simpr φ N 1 M N 1 M
30 29 1 eleqtrrdi φ N 1 M N 1 Z
31 30 adantr φ N 1 M seq N + F dom N 1 Z
32 simpll φ N 1 M seq N + F dom φ
33 32 3 sylan φ N 1 M seq N + F dom k Z F k
34 32 16 syl φ N 1 M seq N + F dom seq N - 1 + 1 + F = seq N + F
35 simpr φ N 1 M seq N + F dom seq N + F dom
36 climdm seq N + F dom seq N + F seq N + F
37 35 36 sylib φ N 1 M seq N + F dom seq N + F seq N + F
38 34 37 eqbrtrd φ N 1 M seq N + F dom seq N - 1 + 1 + F seq N + F
39 1 31 33 38 clim2ser2 φ N 1 M seq N + F dom seq M + F seq N + F + seq M + F N 1
40 26 releldmi seq M + F seq N + F + seq M + F N 1 seq M + F dom
41 39 40 syl φ N 1 M seq N + F dom seq M + F dom
42 28 41 impbida φ N 1 M seq M + F dom seq N + F dom
43 42 ex φ N 1 M seq M + F dom seq N + F dom
44 uzm1 N M N = M N 1 M
45 9 44 syl φ N = M N 1 M
46 7 43 45 mpjaod φ seq M + F dom seq N + F dom