Metamath Proof Explorer


Theorem iserge0

Description: The limit of an infinite series of nonnegative reals is nonnegative. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 3-Feb-2014)

Ref Expression
Hypotheses clim2ser.1 Z = M
iserge0.2 φ M
iserge0.3 φ seq M + F A
iserge0.4 φ k Z F k
iserge0.5 φ k Z 0 F k
Assertion iserge0 φ 0 A

Proof

Step Hyp Ref Expression
1 clim2ser.1 Z = M
2 iserge0.2 φ M
3 iserge0.3 φ seq M + F A
4 iserge0.4 φ k Z F k
5 iserge0.5 φ k Z 0 F k
6 serclim0 M seq M + M × 0 0
7 2 6 syl φ seq M + M × 0 0
8 simpr φ k Z k Z
9 8 1 eleqtrdi φ k Z k M
10 c0ex 0 V
11 10 fvconst2 k M M × 0 k = 0
12 9 11 syl φ k Z M × 0 k = 0
13 0re 0
14 12 13 eqeltrdi φ k Z M × 0 k
15 12 5 eqbrtrd φ k Z M × 0 k F k
16 1 2 7 3 14 4 15 iserle φ 0 A