Metamath Proof Explorer


Theorem iseri

Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. Inference version of iserd , which avoids the need to provide a "dummy antecedent" ph if there is no natural one to choose. (Contributed by AV, 30-Apr-2021)

Ref Expression
Hypotheses iseri.1 Rel R
iseri.2 x R y y R x
iseri.3 x R y y R z x R z
iseri.4 x A x R x
Assertion iseri R Er A

Proof

Step Hyp Ref Expression
1 iseri.1 Rel R
2 iseri.2 x R y y R x
3 iseri.3 x R y y R z x R z
4 iseri.4 x A x R x
5 1 a1i Rel R
6 2 adantl x R y y R x
7 3 adantl x R y y R z x R z
8 4 a1i x A x R x
9 5 6 7 8 iserd R Er A
10 9 mptru R Er A