Metamath Proof Explorer


Theorem iseriALT

Description: Alternate proof of iseri , avoiding the usage of mptru and T. as antecedent by using ax-mp and one of the hypotheses as antecedent. This results, however, in a slightly longer proof. (Contributed by AV, 30-Apr-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses iseri.1 Rel R
iseri.2 x R y y R x
iseri.3 x R y y R z x R z
iseri.4 x A x R x
Assertion iseriALT R Er A

Proof

Step Hyp Ref Expression
1 iseri.1 Rel R
2 iseri.2 x R y y R x
3 iseri.3 x R y y R z x R z
4 iseri.4 x A x R x
5 id Rel R Rel R
6 2 adantl Rel R x R y y R x
7 3 adantl Rel R x R y y R z x R z
8 4 a1i Rel R x A x R x
9 5 6 7 8 iserd Rel R R Er A
10 1 9 ax-mp R Er A