Metamath Proof Explorer


Theorem iserle

Description: Comparison of the limits of two infinite series. (Contributed by Paul Chapman, 12-Nov-2007) (Revised by Mario Carneiro, 3-Feb-2014)

Ref Expression
Hypotheses clim2ser.1 Z = M
iserle.2 φ M
iserle.4 φ seq M + F A
iserle.5 φ seq M + G B
iserle.6 φ k Z F k
iserle.7 φ k Z G k
iserle.8 φ k Z F k G k
Assertion iserle φ A B

Proof

Step Hyp Ref Expression
1 clim2ser.1 Z = M
2 iserle.2 φ M
3 iserle.4 φ seq M + F A
4 iserle.5 φ seq M + G B
5 iserle.6 φ k Z F k
6 iserle.7 φ k Z G k
7 iserle.8 φ k Z F k G k
8 1 2 5 serfre φ seq M + F : Z
9 8 ffvelrnda φ j Z seq M + F j
10 1 2 6 serfre φ seq M + G : Z
11 10 ffvelrnda φ j Z seq M + G j
12 simpr φ j Z j Z
13 12 1 eleqtrdi φ j Z j M
14 simpll φ j Z k M j φ
15 elfzuz k M j k M
16 15 1 eleqtrrdi k M j k Z
17 16 adantl φ j Z k M j k Z
18 14 17 5 syl2anc φ j Z k M j F k
19 14 17 6 syl2anc φ j Z k M j G k
20 14 17 7 syl2anc φ j Z k M j F k G k
21 13 18 19 20 serle φ j Z seq M + F j seq M + G j
22 1 2 3 4 9 11 21 climle φ A B