Metamath Proof Explorer


Theorem isermulc2

Description: Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007) (Revised by Mario Carneiro, 1-Feb-2014)

Ref Expression
Hypotheses clim2ser.1 Z = M
isermulc2.2 φ M
isermulc2.4 φ C
isermulc2.5 φ seq M + F A
isermulc2.6 φ k Z F k
isermulc2.7 φ k Z G k = C F k
Assertion isermulc2 φ seq M + G C A

Proof

Step Hyp Ref Expression
1 clim2ser.1 Z = M
2 isermulc2.2 φ M
3 isermulc2.4 φ C
4 isermulc2.5 φ seq M + F A
5 isermulc2.6 φ k Z F k
6 isermulc2.7 φ k Z G k = C F k
7 seqex seq M + G V
8 7 a1i φ seq M + G V
9 1 2 5 serf φ seq M + F : Z
10 9 ffvelrnda φ j Z seq M + F j
11 addcl k x k + x
12 11 adantl φ j Z k x k + x
13 3 adantr φ j Z C
14 adddi C k x C k + x = C k + C x
15 14 3expb C k x C k + x = C k + C x
16 13 15 sylan φ j Z k x C k + x = C k + C x
17 simpr φ j Z j Z
18 17 1 eleqtrdi φ j Z j M
19 elfzuz k M j k M
20 19 1 eleqtrrdi k M j k Z
21 20 5 sylan2 φ k M j F k
22 21 adantlr φ j Z k M j F k
23 20 6 sylan2 φ k M j G k = C F k
24 23 adantlr φ j Z k M j G k = C F k
25 12 16 18 22 24 seqdistr φ j Z seq M + G j = C seq M + F j
26 1 2 4 3 8 10 25 climmulc2 φ seq M + G C A