Metamath Proof Explorer


Theorem isershft

Description: Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013) (Revised by Mario Carneiro, 5-Nov-2013)

Ref Expression
Hypothesis isershft.1 F V
Assertion isershft M N seq M + ˙ F A seq M + N + ˙ F shift N A

Proof

Step Hyp Ref Expression
1 isershft.1 F V
2 zaddcl M N M + N
3 1 seqshft M + N N seq M + N + ˙ F shift N = seq M + N - N + ˙ F shift N
4 2 3 sylancom M N seq M + N + ˙ F shift N = seq M + N - N + ˙ F shift N
5 zcn M M
6 zcn N N
7 pncan M N M + N - N = M
8 5 6 7 syl2an M N M + N - N = M
9 8 seqeq1d M N seq M + N - N + ˙ F = seq M + ˙ F
10 9 oveq1d M N seq M + N - N + ˙ F shift N = seq M + ˙ F shift N
11 4 10 eqtrd M N seq M + N + ˙ F shift N = seq M + ˙ F shift N
12 11 breq1d M N seq M + N + ˙ F shift N A seq M + ˙ F shift N A
13 seqex seq M + ˙ F V
14 climshft N seq M + ˙ F V seq M + ˙ F shift N A seq M + ˙ F A
15 13 14 mpan2 N seq M + ˙ F shift N A seq M + ˙ F A
16 15 adantl M N seq M + ˙ F shift N A seq M + ˙ F A
17 12 16 bitr2d M N seq M + ˙ F A seq M + N + ˙ F shift N A