Metamath Proof Explorer


Theorem isf32lem1

Description: Lemma for isfin3-2 . Derive weak ordering property. (Contributed by Stefan O'Rear, 5-Nov-2014)

Ref Expression
Hypotheses isf32lem.a φ F : ω 𝒫 G
isf32lem.b φ x ω F suc x F x
isf32lem.c φ ¬ ran F ran F
Assertion isf32lem1 A ω B ω B A φ F A F B

Proof

Step Hyp Ref Expression
1 isf32lem.a φ F : ω 𝒫 G
2 isf32lem.b φ x ω F suc x F x
3 isf32lem.c φ ¬ ran F ran F
4 fveq2 a = B F a = F B
5 4 sseq1d a = B F a F B F B F B
6 5 imbi2d a = B φ F a F B φ F B F B
7 fveq2 a = b F a = F b
8 7 sseq1d a = b F a F B F b F B
9 8 imbi2d a = b φ F a F B φ F b F B
10 fveq2 a = suc b F a = F suc b
11 10 sseq1d a = suc b F a F B F suc b F B
12 11 imbi2d a = suc b φ F a F B φ F suc b F B
13 fveq2 a = A F a = F A
14 13 sseq1d a = A F a F B F A F B
15 14 imbi2d a = A φ F a F B φ F A F B
16 ssid F B F B
17 16 2a1i B ω φ F B F B
18 suceq x = b suc x = suc b
19 18 fveq2d x = b F suc x = F suc b
20 fveq2 x = b F x = F b
21 19 20 sseq12d x = b F suc x F x F suc b F b
22 21 rspcv b ω x ω F suc x F x F suc b F b
23 2 22 syl5 b ω φ F suc b F b
24 23 ad2antrr b ω B ω B b φ F suc b F b
25 sstr2 F suc b F b F b F B F suc b F B
26 24 25 syl6 b ω B ω B b φ F b F B F suc b F B
27 26 a2d b ω B ω B b φ F b F B φ F suc b F B
28 6 9 12 15 17 27 findsg A ω B ω B A φ F A F B
29 28 impr A ω B ω B A φ F A F B