Metamath Proof Explorer


Theorem isf32lem10

Description: Lemma for isfin3-2 . Write in terms of weak dominance. (Contributed by Stefan O'Rear, 6-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Hypotheses isf32lem.a φ F : ω 𝒫 G
isf32lem.b φ x ω F suc x F x
isf32lem.c φ ¬ ran F ran F
isf32lem.d S = y ω | F suc y F y
isf32lem.e J = u ω ι v S | v S u
isf32lem.f K = w S F w F suc w J
isf32lem.g L = t G ι s | s ω t K s
Assertion isf32lem10 φ G V ω * G

Proof

Step Hyp Ref Expression
1 isf32lem.a φ F : ω 𝒫 G
2 isf32lem.b φ x ω F suc x F x
3 isf32lem.c φ ¬ ran F ran F
4 isf32lem.d S = y ω | F suc y F y
5 isf32lem.e J = u ω ι v S | v S u
6 isf32lem.f K = w S F w F suc w J
7 isf32lem.g L = t G ι s | s ω t K s
8 1 2 3 4 5 6 7 isf32lem9 φ L : G onto ω
9 fof L : G onto ω L : G ω
10 8 9 syl φ L : G ω
11 fex L : G ω G V L V
12 10 11 sylan φ G V L V
13 12 ex φ G V L V
14 fowdom L V L : G onto ω ω * G
15 14 expcom L : G onto ω L V ω * G
16 8 13 15 sylsyld φ G V ω * G