Metamath Proof Explorer


Theorem isf32lem12

Description: Lemma for isfin3-2 . (Contributed by Stefan O'Rear, 6-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis isf32lem40.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
Assertion isf32lem12 G V ¬ ω * G G F

Proof

Step Hyp Ref Expression
1 isf32lem40.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
2 elmapi f 𝒫 G ω f : ω 𝒫 G
3 isf32lem11 G V f : ω 𝒫 G b ω f suc b f b ¬ ran f ran f ω * G
4 3 expcom f : ω 𝒫 G b ω f suc b f b ¬ ran f ran f G V ω * G
5 4 3expa f : ω 𝒫 G b ω f suc b f b ¬ ran f ran f G V ω * G
6 5 impancom f : ω 𝒫 G b ω f suc b f b G V ¬ ran f ran f ω * G
7 6 con1d f : ω 𝒫 G b ω f suc b f b G V ¬ ω * G ran f ran f
8 7 exp31 f : ω 𝒫 G b ω f suc b f b G V ¬ ω * G ran f ran f
9 2 8 syl f 𝒫 G ω b ω f suc b f b G V ¬ ω * G ran f ran f
10 9 com4t G V ¬ ω * G f 𝒫 G ω b ω f suc b f b ran f ran f
11 10 ralrimdv G V ¬ ω * G f 𝒫 G ω b ω f suc b f b ran f ran f
12 1 isfin3ds G V G F f 𝒫 G ω b ω f suc b f b ran f ran f
13 11 12 sylibrd G V ¬ ω * G G F