Metamath Proof Explorer


Theorem isf32lem4

Description: Lemma for isfin3-2 . Being a chain, difference sets are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014)

Ref Expression
Hypotheses isf32lem.a φ F : ω 𝒫 G
isf32lem.b φ x ω F suc x F x
isf32lem.c φ ¬ ran F ran F
Assertion isf32lem4 φ A B A ω B ω F A F suc A F B F suc B =

Proof

Step Hyp Ref Expression
1 isf32lem.a φ F : ω 𝒫 G
2 isf32lem.b φ x ω F suc x F x
3 isf32lem.c φ ¬ ran F ran F
4 simplrr φ A B A ω B ω A B B ω
5 simplrl φ A B A ω B ω A B A ω
6 simpr φ A B A ω B ω A B A B
7 simplll φ A B A ω B ω A B φ
8 incom F A F suc A F B F suc B = F B F suc B F A F suc A
9 1 2 3 isf32lem3 B ω A ω A B φ F B F suc B F A F suc A =
10 8 9 eqtrid B ω A ω A B φ F A F suc A F B F suc B =
11 4 5 6 7 10 syl22anc φ A B A ω B ω A B F A F suc A F B F suc B =
12 simplrl φ A B A ω B ω B A A ω
13 simplrr φ A B A ω B ω B A B ω
14 simpr φ A B A ω B ω B A B A
15 simplll φ A B A ω B ω B A φ
16 1 2 3 isf32lem3 A ω B ω B A φ F A F suc A F B F suc B =
17 12 13 14 15 16 syl22anc φ A B A ω B ω B A F A F suc A F B F suc B =
18 simplr φ A B A ω B ω A B
19 nnord A ω Ord A
20 nnord B ω Ord B
21 ordtri3 Ord A Ord B A = B ¬ A B B A
22 19 20 21 syl2an A ω B ω A = B ¬ A B B A
23 22 adantl φ A B A ω B ω A = B ¬ A B B A
24 23 necon2abid φ A B A ω B ω A B B A A B
25 18 24 mpbird φ A B A ω B ω A B B A
26 11 17 25 mpjaodan φ A B A ω B ω F A F suc A F B F suc B =