Metamath Proof Explorer


Theorem isf32lem7

Description: Lemma for isfin3-2 . Different K values are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014)

Ref Expression
Hypotheses isf32lem.a φ F : ω 𝒫 G
isf32lem.b φ x ω F suc x F x
isf32lem.c φ ¬ ran F ran F
isf32lem.d S = y ω | F suc y F y
isf32lem.e J = u ω ι v S | v S u
isf32lem.f K = w S F w F suc w J
Assertion isf32lem7 φ A B A ω B ω K A K B =

Proof

Step Hyp Ref Expression
1 isf32lem.a φ F : ω 𝒫 G
2 isf32lem.b φ x ω F suc x F x
3 isf32lem.c φ ¬ ran F ran F
4 isf32lem.d S = y ω | F suc y F y
5 isf32lem.e J = u ω ι v S | v S u
6 isf32lem.f K = w S F w F suc w J
7 6 fveq1i K A = w S F w F suc w J A
8 4 ssrab3 S ω
9 1 2 3 4 isf32lem5 φ ¬ S Fin
10 5 fin23lem22 S ω ¬ S Fin J : ω 1-1 onto S
11 8 9 10 sylancr φ J : ω 1-1 onto S
12 f1of J : ω 1-1 onto S J : ω S
13 11 12 syl φ J : ω S
14 fvco3 J : ω S A ω w S F w F suc w J A = w S F w F suc w J A
15 13 14 sylan φ A ω w S F w F suc w J A = w S F w F suc w J A
16 15 ad2ant2r φ A B A ω B ω w S F w F suc w J A = w S F w F suc w J A
17 13 adantr φ A B J : ω S
18 simpl A ω B ω A ω
19 ffvelrn J : ω S A ω J A S
20 17 18 19 syl2an φ A B A ω B ω J A S
21 fveq2 w = J A F w = F J A
22 suceq w = J A suc w = suc J A
23 22 fveq2d w = J A F suc w = F suc J A
24 21 23 difeq12d w = J A F w F suc w = F J A F suc J A
25 eqid w S F w F suc w = w S F w F suc w
26 fvex F J A V
27 26 difexi F J A F suc J A V
28 24 25 27 fvmpt J A S w S F w F suc w J A = F J A F suc J A
29 20 28 syl φ A B A ω B ω w S F w F suc w J A = F J A F suc J A
30 16 29 eqtrd φ A B A ω B ω w S F w F suc w J A = F J A F suc J A
31 7 30 eqtrid φ A B A ω B ω K A = F J A F suc J A
32 6 fveq1i K B = w S F w F suc w J B
33 fvco3 J : ω S B ω w S F w F suc w J B = w S F w F suc w J B
34 13 33 sylan φ B ω w S F w F suc w J B = w S F w F suc w J B
35 34 ad2ant2rl φ A B A ω B ω w S F w F suc w J B = w S F w F suc w J B
36 simpr A ω B ω B ω
37 ffvelrn J : ω S B ω J B S
38 17 36 37 syl2an φ A B A ω B ω J B S
39 fveq2 w = J B F w = F J B
40 suceq w = J B suc w = suc J B
41 40 fveq2d w = J B F suc w = F suc J B
42 39 41 difeq12d w = J B F w F suc w = F J B F suc J B
43 fvex F J B V
44 43 difexi F J B F suc J B V
45 42 25 44 fvmpt J B S w S F w F suc w J B = F J B F suc J B
46 38 45 syl φ A B A ω B ω w S F w F suc w J B = F J B F suc J B
47 35 46 eqtrd φ A B A ω B ω w S F w F suc w J B = F J B F suc J B
48 32 47 eqtrid φ A B A ω B ω K B = F J B F suc J B
49 31 48 ineq12d φ A B A ω B ω K A K B = F J A F suc J A F J B F suc J B
50 simpll φ A B A ω B ω φ
51 simplr φ A B A ω B ω A B
52 f1of1 J : ω 1-1 onto S J : ω 1-1 S
53 11 52 syl φ J : ω 1-1 S
54 53 adantr φ A B J : ω 1-1 S
55 f1fveq J : ω 1-1 S A ω B ω J A = J B A = B
56 54 55 sylan φ A B A ω B ω J A = J B A = B
57 56 biimpd φ A B A ω B ω J A = J B A = B
58 57 necon3d φ A B A ω B ω A B J A J B
59 51 58 mpd φ A B A ω B ω J A J B
60 8 20 sselid φ A B A ω B ω J A ω
61 8 38 sselid φ A B A ω B ω J B ω
62 1 2 3 isf32lem4 φ J A J B J A ω J B ω F J A F suc J A F J B F suc J B =
63 50 59 60 61 62 syl22anc φ A B A ω B ω F J A F suc J A F J B F suc J B =
64 49 63 eqtrd φ A B A ω B ω K A K B =