Metamath Proof Explorer


Theorem isf32lem8

Description: Lemma for isfin3-2 . K sets are subsets of the base. (Contributed by Stefan O'Rear, 6-Nov-2014)

Ref Expression
Hypotheses isf32lem.a φ F : ω 𝒫 G
isf32lem.b φ x ω F suc x F x
isf32lem.c φ ¬ ran F ran F
isf32lem.d S = y ω | F suc y F y
isf32lem.e J = u ω ι v S | v S u
isf32lem.f K = w S F w F suc w J
Assertion isf32lem8 φ A ω K A G

Proof

Step Hyp Ref Expression
1 isf32lem.a φ F : ω 𝒫 G
2 isf32lem.b φ x ω F suc x F x
3 isf32lem.c φ ¬ ran F ran F
4 isf32lem.d S = y ω | F suc y F y
5 isf32lem.e J = u ω ι v S | v S u
6 isf32lem.f K = w S F w F suc w J
7 6 fveq1i K A = w S F w F suc w J A
8 4 ssrab3 S ω
9 1 2 3 4 isf32lem5 φ ¬ S Fin
10 5 fin23lem22 S ω ¬ S Fin J : ω 1-1 onto S
11 8 9 10 sylancr φ J : ω 1-1 onto S
12 f1of J : ω 1-1 onto S J : ω S
13 11 12 syl φ J : ω S
14 fvco3 J : ω S A ω w S F w F suc w J A = w S F w F suc w J A
15 13 14 sylan φ A ω w S F w F suc w J A = w S F w F suc w J A
16 13 ffvelrnda φ A ω J A S
17 fveq2 w = J A F w = F J A
18 suceq w = J A suc w = suc J A
19 18 fveq2d w = J A F suc w = F suc J A
20 17 19 difeq12d w = J A F w F suc w = F J A F suc J A
21 eqid w S F w F suc w = w S F w F suc w
22 fvex F J A V
23 22 difexi F J A F suc J A V
24 20 21 23 fvmpt J A S w S F w F suc w J A = F J A F suc J A
25 16 24 syl φ A ω w S F w F suc w J A = F J A F suc J A
26 15 25 eqtrd φ A ω w S F w F suc w J A = F J A F suc J A
27 7 26 eqtrid φ A ω K A = F J A F suc J A
28 1 adantr φ A ω F : ω 𝒫 G
29 8 16 sselid φ A ω J A ω
30 28 29 ffvelrnd φ A ω F J A 𝒫 G
31 30 elpwid φ A ω F J A G
32 31 ssdifssd φ A ω F J A F suc J A G
33 27 32 eqsstrd φ A ω K A G