Metamath Proof Explorer


Theorem isf32lem9

Description: Lemma for isfin3-2 . Construction of the onto function. (Contributed by Stefan O'Rear, 5-Nov-2014) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses isf32lem.a φ F : ω 𝒫 G
isf32lem.b φ x ω F suc x F x
isf32lem.c φ ¬ ran F ran F
isf32lem.d S = y ω | F suc y F y
isf32lem.e J = u ω ι v S | v S u
isf32lem.f K = w S F w F suc w J
isf32lem.g L = t G ι s | s ω t K s
Assertion isf32lem9 φ L : G onto ω

Proof

Step Hyp Ref Expression
1 isf32lem.a φ F : ω 𝒫 G
2 isf32lem.b φ x ω F suc x F x
3 isf32lem.c φ ¬ ran F ran F
4 isf32lem.d S = y ω | F suc y F y
5 isf32lem.e J = u ω ι v S | v S u
6 isf32lem.f K = w S F w F suc w J
7 isf32lem.g L = t G ι s | s ω t K s
8 ssab2 s | s ω t K s ω
9 iotacl ∃! s s ω t K s ι s | s ω t K s s | s ω t K s
10 8 9 sselid ∃! s s ω t K s ι s | s ω t K s ω
11 iotanul ¬ ∃! s s ω t K s ι s | s ω t K s =
12 peano1 ω
13 11 12 eqeltrdi ¬ ∃! s s ω t K s ι s | s ω t K s ω
14 10 13 pm2.61i ι s | s ω t K s ω
15 14 a1i t G ι s | s ω t K s ω
16 7 15 fmpti L : G ω
17 16 a1i φ L : G ω
18 1 2 3 4 5 6 isf32lem6 φ a ω K a
19 n0 K a b b K a
20 18 19 sylib φ a ω b b K a
21 1 2 3 4 5 6 isf32lem8 φ a ω K a G
22 21 sselda φ a ω b K a b G
23 eleq1w t = b t K s b K s
24 23 anbi2d t = b s ω t K s s ω b K s
25 24 iotabidv t = b ι s | s ω t K s = ι s | s ω b K s
26 iotaex ι s | s ω t K s V
27 25 7 26 fvmpt3i b G L b = ι s | s ω b K s
28 22 27 syl φ a ω b K a L b = ι s | s ω b K s
29 simp1r φ b K a a ω s ω b K a
30 simpl1 φ a ω s ω s a φ
31 simpr φ a ω s ω s a s a
32 31 necomd φ a ω s ω s a a s
33 simpl2 φ a ω s ω s a a ω
34 simpl3 φ a ω s ω s a s ω
35 1 2 3 4 5 6 isf32lem7 φ a s a ω s ω K a K s =
36 30 32 33 34 35 syl22anc φ a ω s ω s a K a K s =
37 disj1 K a K s = b b K a ¬ b K s
38 36 37 sylib φ a ω s ω s a b b K a ¬ b K s
39 38 ex φ a ω s ω s a b b K a ¬ b K s
40 sp b b K a ¬ b K s b K a ¬ b K s
41 39 40 syl6 φ a ω s ω s a b K a ¬ b K s
42 41 com23 φ a ω s ω b K a s a ¬ b K s
43 42 3adant1r φ b K a a ω s ω b K a s a ¬ b K s
44 29 43 mpd φ b K a a ω s ω s a ¬ b K s
45 44 necon4ad φ b K a a ω s ω b K s s = a
46 45 3expia φ b K a a ω s ω b K s s = a
47 46 impd φ b K a a ω s ω b K s s = a
48 eleq1w s = a s ω a ω
49 fveq2 s = a K s = K a
50 49 eleq2d s = a b K s b K a
51 48 50 anbi12d s = a s ω b K s a ω b K a
52 51 biimprcd a ω b K a s = a s ω b K s
53 52 ancoms b K a a ω s = a s ω b K s
54 53 adantll φ b K a a ω s = a s ω b K s
55 47 54 impbid φ b K a a ω s ω b K s s = a
56 55 iota5 φ b K a a ω ι s | s ω b K s = a
57 56 an32s φ a ω b K a ι s | s ω b K s = a
58 28 57 eqtr2d φ a ω b K a a = L b
59 22 58 jca φ a ω b K a b G a = L b
60 59 ex φ a ω b K a b G a = L b
61 60 eximdv φ a ω b b K a b b G a = L b
62 df-rex b G a = L b b b G a = L b
63 61 62 syl6ibr φ a ω b b K a b G a = L b
64 20 63 mpd φ a ω b G a = L b
65 64 ralrimiva φ a ω b G a = L b
66 dffo3 L : G onto ω L : G ω a ω b G a = L b
67 17 65 66 sylanbrc φ L : G onto ω