Metamath Proof Explorer


Theorem isf34lem1

Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014)

Ref Expression
Hypothesis compss.a F=x𝒫AAx
Assertion isf34lem1 AVXAFX=AX

Proof

Step Hyp Ref Expression
1 compss.a F=x𝒫AAx
2 difeq2 x=aAx=Aa
3 2 cbvmptv x𝒫AAx=a𝒫AAa
4 1 3 eqtri F=a𝒫AAa
5 difeq2 a=XAa=AX
6 elpw2g AVX𝒫AXA
7 6 biimpar AVXAX𝒫A
8 difexg AVAXV
9 8 adantr AVXAAXV
10 4 5 7 9 fvmptd3 AVXAFX=AX