Metamath Proof Explorer


Theorem isf34lem1

Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014)

Ref Expression
Hypothesis compss.a F = x 𝒫 A A x
Assertion isf34lem1 A V X A F X = A X

Proof

Step Hyp Ref Expression
1 compss.a F = x 𝒫 A A x
2 difeq2 x = a A x = A a
3 2 cbvmptv x 𝒫 A A x = a 𝒫 A A a
4 1 3 eqtri F = a 𝒫 A A a
5 difeq2 a = X A a = A X
6 elpw2g A V X 𝒫 A X A
7 6 biimpar A V X A X 𝒫 A
8 difexg A V A X V
9 8 adantr A V X A A X V
10 4 5 7 9 fvmptd3 A V X A F X = A X