Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
isf34lem1
Next ⟩
isf34lem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
isf34lem1
Description:
Lemma for
isfin3-4
.
(Contributed by
Stefan O'Rear
, 7-Nov-2014)
Ref
Expression
Hypothesis
compss.a
⊢
F
=
x
∈
𝒫
A
⟼
A
∖
x
Assertion
isf34lem1
⊢
A
∈
V
∧
X
⊆
A
→
F
⁡
X
=
A
∖
X
Proof
Step
Hyp
Ref
Expression
1
compss.a
⊢
F
=
x
∈
𝒫
A
⟼
A
∖
x
2
difeq2
⊢
x
=
a
→
A
∖
x
=
A
∖
a
3
2
cbvmptv
⊢
x
∈
𝒫
A
⟼
A
∖
x
=
a
∈
𝒫
A
⟼
A
∖
a
4
1
3
eqtri
⊢
F
=
a
∈
𝒫
A
⟼
A
∖
a
5
difeq2
⊢
a
=
X
→
A
∖
a
=
A
∖
X
6
elpw2g
⊢
A
∈
V
→
X
∈
𝒫
A
↔
X
⊆
A
7
6
biimpar
⊢
A
∈
V
∧
X
⊆
A
→
X
∈
𝒫
A
8
difexg
⊢
A
∈
V
→
A
∖
X
∈
V
9
8
adantr
⊢
A
∈
V
∧
X
⊆
A
→
A
∖
X
∈
V
10
4
5
7
9
fvmptd3
⊢
A
∈
V
∧
X
⊆
A
→
F
⁡
X
=
A
∖
X