Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
isf34lem2
Next ⟩
compssiso
Metamath Proof Explorer
Ascii
Unicode
Theorem
isf34lem2
Description:
Lemma for
isfin3-4
.
(Contributed by
Stefan O'Rear
, 7-Nov-2014)
Ref
Expression
Hypothesis
compss.a
⊢
F
=
x
∈
𝒫
A
⟼
A
∖
x
Assertion
isf34lem2
⊢
A
∈
V
→
F
:
𝒫
A
⟶
𝒫
A
Proof
Step
Hyp
Ref
Expression
1
compss.a
⊢
F
=
x
∈
𝒫
A
⟼
A
∖
x
2
difss
⊢
A
∖
x
⊆
A
3
elpw2g
⊢
A
∈
V
→
A
∖
x
∈
𝒫
A
↔
A
∖
x
⊆
A
4
2
3
mpbiri
⊢
A
∈
V
→
A
∖
x
∈
𝒫
A
5
4
adantr
⊢
A
∈
V
∧
x
∈
𝒫
A
→
A
∖
x
∈
𝒫
A
6
5
1
fmptd
⊢
A
∈
V
→
F
:
𝒫
A
⟶
𝒫
A