Metamath Proof Explorer


Theorem isf34lem2

Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014)

Ref Expression
Hypothesis compss.a F = x 𝒫 A A x
Assertion isf34lem2 A V F : 𝒫 A 𝒫 A

Proof

Step Hyp Ref Expression
1 compss.a F = x 𝒫 A A x
2 difss A x A
3 elpw2g A V A x 𝒫 A A x A
4 2 3 mpbiri A V A x 𝒫 A
5 4 adantr A V x 𝒫 A A x 𝒫 A
6 5 1 fmptd A V F : 𝒫 A 𝒫 A