Metamath Proof Explorer


Theorem isf34lem3

Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis compss.a F = x 𝒫 A A x
Assertion isf34lem3 A V X 𝒫 A F F X = X

Proof

Step Hyp Ref Expression
1 compss.a F = x 𝒫 A A x
2 1 compsscnv F -1 = F
3 2 imaeq1i F -1 F X = F F X
4 1 compssiso A V F Isom [⊂] , [⊂] -1 𝒫 A 𝒫 A
5 isof1o F Isom [⊂] , [⊂] -1 𝒫 A 𝒫 A F : 𝒫 A 1-1 onto 𝒫 A
6 f1of1 F : 𝒫 A 1-1 onto 𝒫 A F : 𝒫 A 1-1 𝒫 A
7 4 5 6 3syl A V F : 𝒫 A 1-1 𝒫 A
8 f1imacnv F : 𝒫 A 1-1 𝒫 A X 𝒫 A F -1 F X = X
9 7 8 sylan A V X 𝒫 A F -1 F X = X
10 3 9 eqtr3id A V X 𝒫 A F F X = X