Step |
Hyp |
Ref |
Expression |
1 |
|
compss.a |
|
2 |
|
sspwuni |
|
3 |
1
|
isf34lem1 |
|
4 |
2 3
|
sylan2b |
|
5 |
4
|
adantrr |
|
6 |
|
simplrr |
|
7 |
|
simprl |
|
8 |
7
|
ad2antrr |
|
9 |
|
simpr |
|
10 |
8 9
|
eldifd |
|
11 |
|
simplrr |
|
12 |
|
elunii |
|
13 |
10 11 12
|
syl2anc |
|
14 |
13
|
ex |
|
15 |
6 14
|
mt3d |
|
16 |
15
|
expr |
|
17 |
16
|
ralrimiva |
|
18 |
17
|
ex |
|
19 |
|
n0 |
|
20 |
|
simpr |
|
21 |
20
|
sselda |
|
22 |
21
|
elpwid |
|
23 |
|
dfss4 |
|
24 |
22 23
|
sylib |
|
25 |
|
simpr |
|
26 |
24 25
|
eqeltrd |
|
27 |
|
difss |
|
28 |
|
elpw2g |
|
29 |
27 28
|
mpbiri |
|
30 |
29
|
ad2antrr |
|
31 |
|
difeq2 |
|
32 |
31
|
eleq1d |
|
33 |
|
eleq2 |
|
34 |
32 33
|
imbi12d |
|
35 |
34
|
rspcv |
|
36 |
30 35
|
syl |
|
37 |
26 36
|
mpid |
|
38 |
|
eldifi |
|
39 |
37 38
|
syl6 |
|
40 |
39
|
ex |
|
41 |
40
|
exlimdv |
|
42 |
19 41
|
syl5bi |
|
43 |
42
|
impr |
|
44 |
|
eluni |
|
45 |
29
|
ad2antrr |
|
46 |
26
|
adantlrr |
|
47 |
46
|
adantrl |
|
48 |
|
elndif |
|
49 |
48
|
ad2antrl |
|
50 |
47 49
|
jcnd |
|
51 |
34
|
notbid |
|
52 |
51
|
rspcev |
|
53 |
45 50 52
|
syl2anc |
|
54 |
|
rexnal |
|
55 |
53 54
|
sylib |
|
56 |
55
|
ex |
|
57 |
56
|
exlimdv |
|
58 |
44 57
|
syl5bi |
|
59 |
58
|
con2d |
|
60 |
43 59
|
jcad |
|
61 |
18 60
|
impbid |
|
62 |
|
eldif |
|
63 |
|
vex |
|
64 |
63
|
elintrab |
|
65 |
61 62 64
|
3bitr4g |
|
66 |
65
|
eqrdv |
|
67 |
5 66
|
eqtrd |
|
68 |
1
|
compss |
|
69 |
68
|
inteqi |
|
70 |
67 69
|
eqtr4di |
|