Metamath Proof Explorer


Theorem isf34lem5

Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis compss.a F = x 𝒫 A A x
Assertion isf34lem5 A V X 𝒫 A X F X = F X

Proof

Step Hyp Ref Expression
1 compss.a F = x 𝒫 A A x
2 imassrn F X ran F
3 1 isf34lem2 A V F : 𝒫 A 𝒫 A
4 3 adantr A V X 𝒫 A X F : 𝒫 A 𝒫 A
5 4 frnd A V X 𝒫 A X ran F 𝒫 A
6 2 5 sstrid A V X 𝒫 A X F X 𝒫 A
7 simprl A V X 𝒫 A X X 𝒫 A
8 4 fdmd A V X 𝒫 A X dom F = 𝒫 A
9 7 8 sseqtrrd A V X 𝒫 A X X dom F
10 sseqin2 X dom F dom F X = X
11 9 10 sylib A V X 𝒫 A X dom F X = X
12 simprr A V X 𝒫 A X X
13 11 12 eqnetrd A V X 𝒫 A X dom F X
14 imadisj F X = dom F X =
15 14 necon3bii F X dom F X
16 13 15 sylibr A V X 𝒫 A X F X
17 6 16 jca A V X 𝒫 A X F X 𝒫 A F X
18 1 isf34lem4 A V F X 𝒫 A F X F F X = F F X
19 17 18 syldan A V X 𝒫 A X F F X = F F X
20 1 isf34lem3 A V X 𝒫 A F F X = X
21 20 adantrr A V X 𝒫 A X F F X = X
22 21 inteqd A V X 𝒫 A X F F X = X
23 19 22 eqtrd A V X 𝒫 A X F F X = X
24 23 fveq2d A V X 𝒫 A X F F F X = F X
25 1 compsscnv F -1 = F
26 25 fveq1i F -1 F F X = F F F X
27 1 compssiso A V F Isom [⊂] , [⊂] -1 𝒫 A 𝒫 A
28 isof1o F Isom [⊂] , [⊂] -1 𝒫 A 𝒫 A F : 𝒫 A 1-1 onto 𝒫 A
29 27 28 syl A V F : 𝒫 A 1-1 onto 𝒫 A
30 sspwuni F X 𝒫 A F X A
31 6 30 sylib A V X 𝒫 A X F X A
32 elpw2g A V F X 𝒫 A F X A
33 32 adantr A V X 𝒫 A X F X 𝒫 A F X A
34 31 33 mpbird A V X 𝒫 A X F X 𝒫 A
35 f1ocnvfv1 F : 𝒫 A 1-1 onto 𝒫 A F X 𝒫 A F -1 F F X = F X
36 29 34 35 syl2an2r A V X 𝒫 A X F -1 F F X = F X
37 26 36 eqtr3id A V X 𝒫 A X F F F X = F X
38 24 37 eqtr3d A V X 𝒫 A X F X = F X