Metamath Proof Explorer


Theorem isf34lem6

Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis compss.a F = x 𝒫 A A x
Assertion isf34lem6 A V A FinIII f 𝒫 A ω y ω f y f suc y ran f ran f

Proof

Step Hyp Ref Expression
1 compss.a F = x 𝒫 A A x
2 elmapi f 𝒫 A ω f : ω 𝒫 A
3 1 isf34lem7 A FinIII f : ω 𝒫 A y ω f y f suc y ran f ran f
4 3 3expia A FinIII f : ω 𝒫 A y ω f y f suc y ran f ran f
5 2 4 sylan2 A FinIII f 𝒫 A ω y ω f y f suc y ran f ran f
6 5 ralrimiva A FinIII f 𝒫 A ω y ω f y f suc y ran f ran f
7 elmapex g 𝒫 A ω 𝒫 A V ω V
8 7 simpld g 𝒫 A ω 𝒫 A V
9 pwexb A V 𝒫 A V
10 8 9 sylibr g 𝒫 A ω A V
11 1 isf34lem2 A V F : 𝒫 A 𝒫 A
12 10 11 syl g 𝒫 A ω F : 𝒫 A 𝒫 A
13 elmapi g 𝒫 A ω g : ω 𝒫 A
14 fco F : 𝒫 A 𝒫 A g : ω 𝒫 A F g : ω 𝒫 A
15 12 13 14 syl2anc g 𝒫 A ω F g : ω 𝒫 A
16 elmapg 𝒫 A V ω V F g 𝒫 A ω F g : ω 𝒫 A
17 7 16 syl g 𝒫 A ω F g 𝒫 A ω F g : ω 𝒫 A
18 15 17 mpbird g 𝒫 A ω F g 𝒫 A ω
19 fveq1 f = F g f y = F g y
20 fveq1 f = F g f suc y = F g suc y
21 19 20 sseq12d f = F g f y f suc y F g y F g suc y
22 21 ralbidv f = F g y ω f y f suc y y ω F g y F g suc y
23 rneq f = F g ran f = ran F g
24 rnco2 ran F g = F ran g
25 23 24 eqtrdi f = F g ran f = F ran g
26 25 unieqd f = F g ran f = F ran g
27 26 25 eleq12d f = F g ran f ran f F ran g F ran g
28 22 27 imbi12d f = F g y ω f y f suc y ran f ran f y ω F g y F g suc y F ran g F ran g
29 28 rspccv f 𝒫 A ω y ω f y f suc y ran f ran f F g 𝒫 A ω y ω F g y F g suc y F ran g F ran g
30 18 29 syl5 f 𝒫 A ω y ω f y f suc y ran f ran f g 𝒫 A ω y ω F g y F g suc y F ran g F ran g
31 sscon g suc y g y A g y A g suc y
32 13 ffvelrnda g 𝒫 A ω y ω g y 𝒫 A
33 32 elpwid g 𝒫 A ω y ω g y A
34 1 isf34lem1 A V g y A F g y = A g y
35 10 33 34 syl2an2r g 𝒫 A ω y ω F g y = A g y
36 peano2 y ω suc y ω
37 ffvelrn g : ω 𝒫 A suc y ω g suc y 𝒫 A
38 13 36 37 syl2an g 𝒫 A ω y ω g suc y 𝒫 A
39 38 elpwid g 𝒫 A ω y ω g suc y A
40 1 isf34lem1 A V g suc y A F g suc y = A g suc y
41 10 39 40 syl2an2r g 𝒫 A ω y ω F g suc y = A g suc y
42 35 41 sseq12d g 𝒫 A ω y ω F g y F g suc y A g y A g suc y
43 31 42 syl5ibr g 𝒫 A ω y ω g suc y g y F g y F g suc y
44 fvco3 g : ω 𝒫 A y ω F g y = F g y
45 13 44 sylan g 𝒫 A ω y ω F g y = F g y
46 fvco3 g : ω 𝒫 A suc y ω F g suc y = F g suc y
47 13 36 46 syl2an g 𝒫 A ω y ω F g suc y = F g suc y
48 45 47 sseq12d g 𝒫 A ω y ω F g y F g suc y F g y F g suc y
49 43 48 sylibrd g 𝒫 A ω y ω g suc y g y F g y F g suc y
50 49 ralimdva g 𝒫 A ω y ω g suc y g y y ω F g y F g suc y
51 12 ffnd g 𝒫 A ω F Fn 𝒫 A
52 imassrn F ran g ran F
53 12 frnd g 𝒫 A ω ran F 𝒫 A
54 52 53 sstrid g 𝒫 A ω F ran g 𝒫 A
55 fnfvima F Fn 𝒫 A F ran g 𝒫 A F ran g F ran g F F ran g F F ran g
56 55 3expia F Fn 𝒫 A F ran g 𝒫 A F ran g F ran g F F ran g F F ran g
57 51 54 56 syl2anc g 𝒫 A ω F ran g F ran g F F ran g F F ran g
58 incom dom F ran g = ran g dom F
59 13 frnd g 𝒫 A ω ran g 𝒫 A
60 12 fdmd g 𝒫 A ω dom F = 𝒫 A
61 59 60 sseqtrrd g 𝒫 A ω ran g dom F
62 df-ss ran g dom F ran g dom F = ran g
63 61 62 sylib g 𝒫 A ω ran g dom F = ran g
64 58 63 eqtrid g 𝒫 A ω dom F ran g = ran g
65 13 fdmd g 𝒫 A ω dom g = ω
66 peano1 ω
67 ne0i ω ω
68 66 67 mp1i g 𝒫 A ω ω
69 65 68 eqnetrd g 𝒫 A ω dom g
70 dm0rn0 dom g = ran g =
71 70 necon3bii dom g ran g
72 69 71 sylib g 𝒫 A ω ran g
73 64 72 eqnetrd g 𝒫 A ω dom F ran g
74 imadisj F ran g = dom F ran g =
75 74 necon3bii F ran g dom F ran g
76 73 75 sylibr g 𝒫 A ω F ran g
77 1 isf34lem4 A V F ran g 𝒫 A F ran g F F ran g = F F ran g
78 10 54 76 77 syl12anc g 𝒫 A ω F F ran g = F F ran g
79 1 isf34lem3 A V ran g 𝒫 A F F ran g = ran g
80 10 59 79 syl2anc g 𝒫 A ω F F ran g = ran g
81 80 inteqd g 𝒫 A ω F F ran g = ran g
82 78 81 eqtrd g 𝒫 A ω F F ran g = ran g
83 82 80 eleq12d g 𝒫 A ω F F ran g F F ran g ran g ran g
84 57 83 sylibd g 𝒫 A ω F ran g F ran g ran g ran g
85 50 84 imim12d g 𝒫 A ω y ω F g y F g suc y F ran g F ran g y ω g suc y g y ran g ran g
86 30 85 sylcom f 𝒫 A ω y ω f y f suc y ran f ran f g 𝒫 A ω y ω g suc y g y ran g ran g
87 86 ralrimiv f 𝒫 A ω y ω f y f suc y ran f ran f g 𝒫 A ω y ω g suc y g y ran g ran g
88 isfin3-3 A V A FinIII g 𝒫 A ω y ω g suc y g y ran g ran g
89 87 88 syl5ibr A V f 𝒫 A ω y ω f y f suc y ran f ran f A FinIII
90 6 89 impbid2 A V A FinIII f 𝒫 A ω y ω f y f suc y ran f ran f