| Step |
Hyp |
Ref |
Expression |
| 1 |
|
compss.a |
|
| 2 |
1
|
isf34lem2 |
|
| 3 |
2
|
adantr |
|
| 4 |
3
|
3adant3 |
|
| 5 |
4
|
ffnd |
|
| 6 |
|
imassrn |
|
| 7 |
3
|
frnd |
|
| 8 |
7
|
3adant3 |
|
| 9 |
6 8
|
sstrid |
|
| 10 |
|
simp1 |
|
| 11 |
|
fco |
|
| 12 |
2 11
|
sylan |
|
| 13 |
12
|
3adant3 |
|
| 14 |
|
sscon |
|
| 15 |
|
simpr |
|
| 16 |
|
peano2 |
|
| 17 |
|
fvco3 |
|
| 18 |
15 16 17
|
syl2an |
|
| 19 |
|
simpll |
|
| 20 |
|
ffvelcdm |
|
| 21 |
15 16 20
|
syl2an |
|
| 22 |
21
|
elpwid |
|
| 23 |
1
|
isf34lem1 |
|
| 24 |
19 22 23
|
syl2anc |
|
| 25 |
18 24
|
eqtrd |
|
| 26 |
|
fvco3 |
|
| 27 |
26
|
adantll |
|
| 28 |
|
ffvelcdm |
|
| 29 |
28
|
adantll |
|
| 30 |
29
|
elpwid |
|
| 31 |
1
|
isf34lem1 |
|
| 32 |
19 30 31
|
syl2anc |
|
| 33 |
27 32
|
eqtrd |
|
| 34 |
25 33
|
sseq12d |
|
| 35 |
14 34
|
imbitrrid |
|
| 36 |
35
|
ralimdva |
|
| 37 |
36
|
3impia |
|
| 38 |
|
fin33i |
|
| 39 |
10 13 37 38
|
syl3anc |
|
| 40 |
|
rnco2 |
|
| 41 |
40
|
inteqi |
|
| 42 |
39 41 40
|
3eltr3g |
|
| 43 |
|
fnfvima |
|
| 44 |
5 9 42 43
|
syl3anc |
|
| 45 |
|
simpl |
|
| 46 |
6 7
|
sstrid |
|
| 47 |
|
incom |
|
| 48 |
|
frn |
|
| 49 |
48
|
adantl |
|
| 50 |
3
|
fdmd |
|
| 51 |
49 50
|
sseqtrrd |
|
| 52 |
|
dfss2 |
|
| 53 |
51 52
|
sylib |
|
| 54 |
47 53
|
eqtrid |
|
| 55 |
|
fdm |
|
| 56 |
55
|
adantl |
|
| 57 |
|
peano1 |
|
| 58 |
|
ne0i |
|
| 59 |
57 58
|
mp1i |
|
| 60 |
56 59
|
eqnetrd |
|
| 61 |
|
dm0rn0 |
|
| 62 |
61
|
necon3bii |
|
| 63 |
60 62
|
sylib |
|
| 64 |
54 63
|
eqnetrd |
|
| 65 |
|
imadisj |
|
| 66 |
65
|
necon3bii |
|
| 67 |
64 66
|
sylibr |
|
| 68 |
1
|
isf34lem5 |
|
| 69 |
45 46 67 68
|
syl12anc |
|
| 70 |
1
|
isf34lem3 |
|
| 71 |
45 49 70
|
syl2anc |
|
| 72 |
71
|
unieqd |
|
| 73 |
69 72
|
eqtrd |
|
| 74 |
73 71
|
eleq12d |
|
| 75 |
74
|
3adant3 |
|
| 76 |
44 75
|
mpbid |
|