Step |
Hyp |
Ref |
Expression |
1 |
|
compss.a |
|
2 |
1
|
isf34lem2 |
|
3 |
2
|
adantr |
|
4 |
3
|
3adant3 |
|
5 |
4
|
ffnd |
|
6 |
|
imassrn |
|
7 |
3
|
frnd |
|
8 |
7
|
3adant3 |
|
9 |
6 8
|
sstrid |
|
10 |
|
simp1 |
|
11 |
|
fco |
|
12 |
2 11
|
sylan |
|
13 |
12
|
3adant3 |
|
14 |
|
sscon |
|
15 |
|
simpr |
|
16 |
|
peano2 |
|
17 |
|
fvco3 |
|
18 |
15 16 17
|
syl2an |
|
19 |
|
simpll |
|
20 |
|
ffvelrn |
|
21 |
15 16 20
|
syl2an |
|
22 |
21
|
elpwid |
|
23 |
1
|
isf34lem1 |
|
24 |
19 22 23
|
syl2anc |
|
25 |
18 24
|
eqtrd |
|
26 |
|
fvco3 |
|
27 |
26
|
adantll |
|
28 |
|
ffvelrn |
|
29 |
28
|
adantll |
|
30 |
29
|
elpwid |
|
31 |
1
|
isf34lem1 |
|
32 |
19 30 31
|
syl2anc |
|
33 |
27 32
|
eqtrd |
|
34 |
25 33
|
sseq12d |
|
35 |
14 34
|
syl5ibr |
|
36 |
35
|
ralimdva |
|
37 |
36
|
3impia |
|
38 |
|
fin33i |
|
39 |
10 13 37 38
|
syl3anc |
|
40 |
|
rnco2 |
|
41 |
40
|
inteqi |
|
42 |
39 41 40
|
3eltr3g |
|
43 |
|
fnfvima |
|
44 |
5 9 42 43
|
syl3anc |
|
45 |
|
simpl |
|
46 |
6 7
|
sstrid |
|
47 |
|
incom |
|
48 |
|
frn |
|
49 |
48
|
adantl |
|
50 |
3
|
fdmd |
|
51 |
49 50
|
sseqtrrd |
|
52 |
|
df-ss |
|
53 |
51 52
|
sylib |
|
54 |
47 53
|
eqtrid |
|
55 |
|
fdm |
|
56 |
55
|
adantl |
|
57 |
|
peano1 |
|
58 |
|
ne0i |
|
59 |
57 58
|
mp1i |
|
60 |
56 59
|
eqnetrd |
|
61 |
|
dm0rn0 |
|
62 |
61
|
necon3bii |
|
63 |
60 62
|
sylib |
|
64 |
54 63
|
eqnetrd |
|
65 |
|
imadisj |
|
66 |
65
|
necon3bii |
|
67 |
64 66
|
sylibr |
|
68 |
1
|
isf34lem5 |
|
69 |
45 46 67 68
|
syl12anc |
|
70 |
1
|
isf34lem3 |
|
71 |
45 49 70
|
syl2anc |
|
72 |
71
|
unieqd |
|
73 |
69 72
|
eqtrd |
|
74 |
73 71
|
eleq12d |
|
75 |
74
|
3adant3 |
|
76 |
44 75
|
mpbid |
|