Metamath Proof Explorer


Theorem isfbas2

Description: The predicate " F is a filter base." (Contributed by Jeff Hankins, 1-Sep-2009) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion isfbas2 BAFfBasBF𝒫BFFxFyFzFzxy

Proof

Step Hyp Ref Expression
1 isfbas BAFfBasBF𝒫BFFxFyFF𝒫xy
2 elin zF𝒫xyzFz𝒫xy
3 velpw z𝒫xyzxy
4 3 anbi2i zFz𝒫xyzFzxy
5 2 4 bitri zF𝒫xyzFzxy
6 5 exbii zzF𝒫xyzzFzxy
7 n0 F𝒫xyzzF𝒫xy
8 df-rex zFzxyzzFzxy
9 6 7 8 3bitr4i F𝒫xyzFzxy
10 9 2ralbii xFyFF𝒫xyxFyFzFzxy
11 10 3anbi3i FFxFyFF𝒫xyFFxFyFzFzxy
12 11 anbi2i F𝒫BFFxFyFF𝒫xyF𝒫BFFxFyFzFzxy
13 1 12 bitrdi BAFfBasBF𝒫BFFxFyFzFzxy