Metamath Proof Explorer


Theorem isfcls

Description: A cluster point of a filter. (Contributed by Jeff Hankins, 10-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Hypothesis fclsval.x X = J
Assertion isfcls A J fClus F J Top F Fil X s F A cls J s

Proof

Step Hyp Ref Expression
1 fclsval.x X = J
2 anass J Top F ran Fil X = F s F A cls J s J Top F ran Fil X = F s F A cls J s
3 fvssunirn Fil X ran Fil
4 3 sseli F Fil X F ran Fil
5 filunibas F Fil X F = X
6 5 eqcomd F Fil X X = F
7 4 6 jca F Fil X F ran Fil X = F
8 filunirn F ran Fil F Fil F
9 fveq2 X = F Fil X = Fil F
10 9 eleq2d X = F F Fil X F Fil F
11 10 biimparc F Fil F X = F F Fil X
12 8 11 sylanb F ran Fil X = F F Fil X
13 7 12 impbii F Fil X F ran Fil X = F
14 13 anbi2i J Top F Fil X J Top F ran Fil X = F
15 14 anbi1i J Top F Fil X s F A cls J s J Top F ran Fil X = F s F A cls J s
16 df-3an J Top F Fil X s F A cls J s J Top F Fil X s F A cls J s
17 anass J Top F ran Fil X = F J Top F ran Fil X = F
18 17 anbi1i J Top F ran Fil X = F s F A cls J s J Top F ran Fil X = F s F A cls J s
19 15 16 18 3bitr4i J Top F Fil X s F A cls J s J Top F ran Fil X = F s F A cls J s
20 df-fcls fClus = j Top , f ran Fil if j = f x f cls j x
21 20 elmpocl A J fClus F J Top F ran Fil
22 1 fclsval J Top F Fil F J fClus F = if X = F s F cls J s
23 8 22 sylan2b J Top F ran Fil J fClus F = if X = F s F cls J s
24 23 eleq2d J Top F ran Fil A J fClus F A if X = F s F cls J s
25 n0i A if X = F s F cls J s ¬ if X = F s F cls J s =
26 iffalse ¬ X = F if X = F s F cls J s =
27 25 26 nsyl2 A if X = F s F cls J s X = F
28 27 a1i J Top F ran Fil A if X = F s F cls J s X = F
29 28 pm4.71rd J Top F ran Fil A if X = F s F cls J s X = F A if X = F s F cls J s
30 iftrue X = F if X = F s F cls J s = s F cls J s
31 30 adantl J Top F ran Fil X = F if X = F s F cls J s = s F cls J s
32 31 eleq2d J Top F ran Fil X = F A if X = F s F cls J s A s F cls J s
33 elex A s F cls J s A V
34 33 a1i J Top F ran Fil X = F A s F cls J s A V
35 filn0 F Fil F F
36 8 35 sylbi F ran Fil F
37 36 ad2antlr J Top F ran Fil X = F F
38 r19.2z F s F A cls J s s F A cls J s
39 38 ex F s F A cls J s s F A cls J s
40 37 39 syl J Top F ran Fil X = F s F A cls J s s F A cls J s
41 elex A cls J s A V
42 41 rexlimivw s F A cls J s A V
43 40 42 syl6 J Top F ran Fil X = F s F A cls J s A V
44 eliin A V A s F cls J s s F A cls J s
45 44 a1i J Top F ran Fil X = F A V A s F cls J s s F A cls J s
46 34 43 45 pm5.21ndd J Top F ran Fil X = F A s F cls J s s F A cls J s
47 32 46 bitrd J Top F ran Fil X = F A if X = F s F cls J s s F A cls J s
48 47 pm5.32da J Top F ran Fil X = F A if X = F s F cls J s X = F s F A cls J s
49 24 29 48 3bitrd J Top F ran Fil A J fClus F X = F s F A cls J s
50 21 49 biadanii A J fClus F J Top F ran Fil X = F s F A cls J s
51 2 19 50 3bitr4ri A J fClus F J Top F Fil X s F A cls J s