Database
BASIC TOPOLOGY
Filters and filter bases
Filter limits
isfcls2
Next ⟩
fclsopn
Metamath Proof Explorer
Ascii
Unicode
Theorem
isfcls2
Description:
A cluster point of a filter.
(Contributed by
Mario Carneiro
, 26-Aug-2015)
Ref
Expression
Assertion
isfcls2
⊢
J
∈
TopOn
⁡
X
∧
F
∈
Fil
⁡
X
→
A
∈
J
fClus
F
↔
∀
s
∈
F
A
∈
cls
⁡
J
⁡
s
Proof
Step
Hyp
Ref
Expression
1
topontop
⊢
J
∈
TopOn
⁡
X
→
J
∈
Top
2
toponuni
⊢
J
∈
TopOn
⁡
X
→
X
=
⋃
J
3
2
fveq2d
⊢
J
∈
TopOn
⁡
X
→
Fil
⁡
X
=
Fil
⁡
⋃
J
4
3
eleq2d
⊢
J
∈
TopOn
⁡
X
→
F
∈
Fil
⁡
X
↔
F
∈
Fil
⁡
⋃
J
5
4
biimpa
⊢
J
∈
TopOn
⁡
X
∧
F
∈
Fil
⁡
X
→
F
∈
Fil
⁡
⋃
J
6
eqid
⊢
⋃
J
=
⋃
J
7
6
isfcls
⊢
A
∈
J
fClus
F
↔
J
∈
Top
∧
F
∈
Fil
⁡
⋃
J
∧
∀
s
∈
F
A
∈
cls
⁡
J
⁡
s
8
df-3an
⊢
J
∈
Top
∧
F
∈
Fil
⁡
⋃
J
∧
∀
s
∈
F
A
∈
cls
⁡
J
⁡
s
↔
J
∈
Top
∧
F
∈
Fil
⁡
⋃
J
∧
∀
s
∈
F
A
∈
cls
⁡
J
⁡
s
9
7
8
bitri
⊢
A
∈
J
fClus
F
↔
J
∈
Top
∧
F
∈
Fil
⁡
⋃
J
∧
∀
s
∈
F
A
∈
cls
⁡
J
⁡
s
10
9
baib
⊢
J
∈
Top
∧
F
∈
Fil
⁡
⋃
J
→
A
∈
J
fClus
F
↔
∀
s
∈
F
A
∈
cls
⁡
J
⁡
s
11
1
5
10
syl2an2r
⊢
J
∈
TopOn
⁡
X
∧
F
∈
Fil
⁡
X
→
A
∈
J
fClus
F
↔
∀
s
∈
F
A
∈
cls
⁡
J
⁡
s