Metamath Proof Explorer


Theorem isfcls2

Description: A cluster point of a filter. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion isfcls2 J TopOn X F Fil X A J fClus F s F A cls J s

Proof

Step Hyp Ref Expression
1 topontop J TopOn X J Top
2 toponuni J TopOn X X = J
3 2 fveq2d J TopOn X Fil X = Fil J
4 3 eleq2d J TopOn X F Fil X F Fil J
5 4 biimpa J TopOn X F Fil X F Fil J
6 eqid J = J
7 6 isfcls A J fClus F J Top F Fil J s F A cls J s
8 df-3an J Top F Fil J s F A cls J s J Top F Fil J s F A cls J s
9 7 8 bitri A J fClus F J Top F Fil J s F A cls J s
10 9 baib J Top F Fil J A J fClus F s F A cls J s
11 1 5 10 syl2an2r J TopOn X F Fil X A J fClus F s F A cls J s