Metamath Proof Explorer


Theorem isfil

Description: The predicate "is a filter." (Contributed by FL, 20-Jul-2007) (Revised by Mario Carneiro, 28-Jul-2015)

Ref Expression
Assertion isfil F Fil X F fBas X x 𝒫 X F 𝒫 x x F

Proof

Step Hyp Ref Expression
1 df-fil Fil = z V f fBas z | x 𝒫 z f 𝒫 x x f
2 pweq z = X 𝒫 z = 𝒫 X
3 2 adantr z = X f = F 𝒫 z = 𝒫 X
4 ineq1 f = F f 𝒫 x = F 𝒫 x
5 4 neeq1d f = F f 𝒫 x F 𝒫 x
6 eleq2 f = F x f x F
7 5 6 imbi12d f = F f 𝒫 x x f F 𝒫 x x F
8 7 adantl z = X f = F f 𝒫 x x f F 𝒫 x x F
9 3 8 raleqbidv z = X f = F x 𝒫 z f 𝒫 x x f x 𝒫 X F 𝒫 x x F
10 fveq2 z = X fBas z = fBas X
11 fvex fBas z V
12 elfvdm F fBas X X dom fBas
13 1 9 10 11 12 elmptrab2 F Fil X F fBas X x 𝒫 X F 𝒫 x x F