Metamath Proof Explorer


Theorem isfin1-2

Description: A set is finite in the usual sense iff the power set of its power set is Dedekind finite. (Contributed by Stefan O'Rear, 3-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion isfin1-2 A Fin 𝒫 𝒫 A FinIV

Proof

Step Hyp Ref Expression
1 elex A Fin A V
2 elex 𝒫 𝒫 A FinIV 𝒫 𝒫 A V
3 pwexb A V 𝒫 A V
4 pwexb 𝒫 A V 𝒫 𝒫 A V
5 3 4 bitri A V 𝒫 𝒫 A V
6 2 5 sylibr 𝒫 𝒫 A FinIV A V
7 ominf ¬ ω Fin
8 pwfi A Fin 𝒫 A Fin
9 pwfi 𝒫 A Fin 𝒫 𝒫 A Fin
10 8 9 bitri A Fin 𝒫 𝒫 A Fin
11 domfi 𝒫 𝒫 A Fin ω 𝒫 𝒫 A ω Fin
12 11 expcom ω 𝒫 𝒫 A 𝒫 𝒫 A Fin ω Fin
13 10 12 syl5bi ω 𝒫 𝒫 A A Fin ω Fin
14 7 13 mtoi ω 𝒫 𝒫 A ¬ A Fin
15 fineqvlem A V ¬ A Fin ω 𝒫 𝒫 A
16 15 ex A V ¬ A Fin ω 𝒫 𝒫 A
17 14 16 impbid2 A V ω 𝒫 𝒫 A ¬ A Fin
18 17 con2bid A V A Fin ¬ ω 𝒫 𝒫 A
19 isfin4-2 𝒫 𝒫 A V 𝒫 𝒫 A FinIV ¬ ω 𝒫 𝒫 A
20 5 19 sylbi A V 𝒫 𝒫 A FinIV ¬ ω 𝒫 𝒫 A
21 18 20 bitr4d A V A Fin 𝒫 𝒫 A FinIV
22 1 6 21 pm5.21nii A Fin 𝒫 𝒫 A FinIV