Metamath Proof Explorer


Theorem isfin1-4

Description: A set is I-finite iff every system of subsets contains a minimal subset. (Contributed by Stefan O'Rear, 4-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion isfin1-4 A V A Fin [⊂] Fr 𝒫 A

Proof

Step Hyp Ref Expression
1 isfin1-3 A V A Fin [⊂] -1 Fr 𝒫 A
2 eqid x 𝒫 A A x = x 𝒫 A A x
3 2 compssiso A V x 𝒫 A A x Isom [⊂] , [⊂] -1 𝒫 A 𝒫 A
4 isofr x 𝒫 A A x Isom [⊂] , [⊂] -1 𝒫 A 𝒫 A [⊂] Fr 𝒫 A [⊂] -1 Fr 𝒫 A
5 3 4 syl A V [⊂] Fr 𝒫 A [⊂] -1 Fr 𝒫 A
6 1 5 bitr4d A V A Fin [⊂] Fr 𝒫 A