Metamath Proof Explorer


Theorem isfin3

Description: Definition of a III-finite set. (Contributed by Stefan O'Rear, 16-May-2015)

Ref Expression
Assertion isfin3 A FinIII 𝒫 A FinIV

Proof

Step Hyp Ref Expression
1 df-fin3 FinIII = x | 𝒫 x FinIV
2 1 eleq2i A FinIII A x | 𝒫 x FinIV
3 pwexr 𝒫 A FinIV A V
4 pweq x = A 𝒫 x = 𝒫 A
5 4 eleq1d x = A 𝒫 x FinIV 𝒫 A FinIV
6 3 5 elab3 A x | 𝒫 x FinIV 𝒫 A FinIV
7 2 6 bitri A FinIII 𝒫 A FinIV