Metamath Proof Explorer


Theorem isfin3-2

Description: Weakly Dedekind-infinite sets are exactly those which can be mapped onto _om . (Contributed by Stefan O'Rear, 6-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion isfin3-2 A V A FinIII ¬ ω * A

Proof

Step Hyp Ref Expression
1 isfin32i A FinIII ¬ ω * A
2 isf33lem FinIII = g | a 𝒫 g ω x ω a suc x a x ran a ran a
3 2 isf32lem12 A V ¬ ω * A A FinIII
4 1 3 impbid2 A V A FinIII ¬ ω * A