Metamath Proof Explorer


Theorem isfin3ds

Description: Property of a III-finite set (descending sequence version). (Contributed by Mario Carneiro, 16-May-2015)

Ref Expression
Hypothesis isfin3ds.f F = g | a 𝒫 g ω b ω a suc b a b ran a ran a
Assertion isfin3ds A V A F f 𝒫 A ω x ω f suc x f x ran f ran f

Proof

Step Hyp Ref Expression
1 isfin3ds.f F = g | a 𝒫 g ω b ω a suc b a b ran a ran a
2 suceq b = x suc b = suc x
3 2 fveq2d b = x a suc b = a suc x
4 fveq2 b = x a b = a x
5 3 4 sseq12d b = x a suc b a b a suc x a x
6 5 cbvralvw b ω a suc b a b x ω a suc x a x
7 fveq1 a = f a suc x = f suc x
8 fveq1 a = f a x = f x
9 7 8 sseq12d a = f a suc x a x f suc x f x
10 9 ralbidv a = f x ω a suc x a x x ω f suc x f x
11 6 10 syl5bb a = f b ω a suc b a b x ω f suc x f x
12 rneq a = f ran a = ran f
13 12 inteqd a = f ran a = ran f
14 13 12 eleq12d a = f ran a ran a ran f ran f
15 11 14 imbi12d a = f b ω a suc b a b ran a ran a x ω f suc x f x ran f ran f
16 15 cbvralvw a 𝒫 g ω b ω a suc b a b ran a ran a f 𝒫 g ω x ω f suc x f x ran f ran f
17 pweq g = A 𝒫 g = 𝒫 A
18 17 oveq1d g = A 𝒫 g ω = 𝒫 A ω
19 18 raleqdv g = A f 𝒫 g ω x ω f suc x f x ran f ran f f 𝒫 A ω x ω f suc x f x ran f ran f
20 16 19 syl5bb g = A a 𝒫 g ω b ω a suc b a b ran a ran a f 𝒫 A ω x ω f suc x f x ran f ran f
21 20 1 elab2g A V A F f 𝒫 A ω x ω f suc x f x ran f ran f