Metamath Proof Explorer


Theorem isfin5

Description: Definition of a V-finite set. (Contributed by Stefan O'Rear, 16-May-2015)

Ref Expression
Assertion isfin5 A FinV A = A A ⊔︀ A

Proof

Step Hyp Ref Expression
1 df-fin5 FinV = x | x = x x ⊔︀ x
2 1 eleq2i A FinV A x | x = x x ⊔︀ x
3 id A = A =
4 0ex V
5 3 4 eqeltrdi A = A V
6 relsdom Rel
7 6 brrelex1i A A ⊔︀ A A V
8 5 7 jaoi A = A A ⊔︀ A A V
9 eqeq1 x = A x = A =
10 id x = A x = A
11 djueq12 x = A x = A x ⊔︀ x = A ⊔︀ A
12 11 anidms x = A x ⊔︀ x = A ⊔︀ A
13 10 12 breq12d x = A x x ⊔︀ x A A ⊔︀ A
14 9 13 orbi12d x = A x = x x ⊔︀ x A = A A ⊔︀ A
15 8 14 elab3 A x | x = x x ⊔︀ x A = A A ⊔︀ A
16 2 15 bitri A FinV A = A A ⊔︀ A