Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
isfin5
Next ⟩
isfin6
Metamath Proof Explorer
Ascii
Unicode
Theorem
isfin5
Description:
Definition of a V-finite set.
(Contributed by
Stefan O'Rear
, 16-May-2015)
Ref
Expression
Assertion
isfin5
⊢
A
∈
Fin
V
↔
A
=
∅
∨
A
≺
A
⊔︀
A
Proof
Step
Hyp
Ref
Expression
1
df-fin5
⊢
Fin
V
=
x
|
x
=
∅
∨
x
≺
x
⊔︀
x
2
1
eleq2i
⊢
A
∈
Fin
V
↔
A
∈
x
|
x
=
∅
∨
x
≺
x
⊔︀
x
3
id
⊢
A
=
∅
→
A
=
∅
4
0ex
⊢
∅
∈
V
5
3
4
eqeltrdi
⊢
A
=
∅
→
A
∈
V
6
relsdom
⊢
Rel
⁡
≺
7
6
brrelex1i
⊢
A
≺
A
⊔︀
A
→
A
∈
V
8
5
7
jaoi
⊢
A
=
∅
∨
A
≺
A
⊔︀
A
→
A
∈
V
9
eqeq1
⊢
x
=
A
→
x
=
∅
↔
A
=
∅
10
id
⊢
x
=
A
→
x
=
A
11
djueq12
⊢
x
=
A
∧
x
=
A
→
x
⊔︀
x
=
A
⊔︀
A
12
11
anidms
⊢
x
=
A
→
x
⊔︀
x
=
A
⊔︀
A
13
10
12
breq12d
⊢
x
=
A
→
x
≺
x
⊔︀
x
↔
A
≺
A
⊔︀
A
14
9
13
orbi12d
⊢
x
=
A
→
x
=
∅
∨
x
≺
x
⊔︀
x
↔
A
=
∅
∨
A
≺
A
⊔︀
A
15
8
14
elab3
⊢
A
∈
x
|
x
=
∅
∨
x
≺
x
⊔︀
x
↔
A
=
∅
∨
A
≺
A
⊔︀
A
16
2
15
bitri
⊢
A
∈
Fin
V
↔
A
=
∅
∨
A
≺
A
⊔︀
A