Metamath Proof Explorer


Theorem isfin5-2

Description: Alternate definition of V-finite which emphasizes the idempotent behavior of V-infinite sets. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion isfin5-2 A V A FinV ¬ A A A ⊔︀ A

Proof

Step Hyp Ref Expression
1 nne ¬ A A =
2 1 bicomi A = ¬ A
3 2 a1i A V A = ¬ A
4 djudoml A V A V A A ⊔︀ A
5 4 anidms A V A A ⊔︀ A
6 brsdom A A ⊔︀ A A A ⊔︀ A ¬ A A ⊔︀ A
7 6 baib A A ⊔︀ A A A ⊔︀ A ¬ A A ⊔︀ A
8 5 7 syl A V A A ⊔︀ A ¬ A A ⊔︀ A
9 3 8 orbi12d A V A = A A ⊔︀ A ¬ A ¬ A A ⊔︀ A
10 isfin5 A FinV A = A A ⊔︀ A
11 ianor ¬ A A A ⊔︀ A ¬ A ¬ A A ⊔︀ A
12 9 10 11 3bitr4g A V A FinV ¬ A A A ⊔︀ A