Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
isfin6
Next ⟩
isfin7
Metamath Proof Explorer
Ascii
Unicode
Theorem
isfin6
Description:
Definition of a VI-finite set.
(Contributed by
Stefan O'Rear
, 16-May-2015)
Ref
Expression
Assertion
isfin6
⊢
A
∈
Fin
VI
↔
A
≺
2
𝑜
∨
A
≺
A
×
A
Proof
Step
Hyp
Ref
Expression
1
df-fin6
⊢
Fin
VI
=
x
|
x
≺
2
𝑜
∨
x
≺
x
×
x
2
1
eleq2i
⊢
A
∈
Fin
VI
↔
A
∈
x
|
x
≺
2
𝑜
∨
x
≺
x
×
x
3
relsdom
⊢
Rel
⁡
≺
4
3
brrelex1i
⊢
A
≺
2
𝑜
→
A
∈
V
5
3
brrelex1i
⊢
A
≺
A
×
A
→
A
∈
V
6
4
5
jaoi
⊢
A
≺
2
𝑜
∨
A
≺
A
×
A
→
A
∈
V
7
breq1
⊢
x
=
A
→
x
≺
2
𝑜
↔
A
≺
2
𝑜
8
id
⊢
x
=
A
→
x
=
A
9
8
sqxpeqd
⊢
x
=
A
→
x
×
x
=
A
×
A
10
8
9
breq12d
⊢
x
=
A
→
x
≺
x
×
x
↔
A
≺
A
×
A
11
7
10
orbi12d
⊢
x
=
A
→
x
≺
2
𝑜
∨
x
≺
x
×
x
↔
A
≺
2
𝑜
∨
A
≺
A
×
A
12
6
11
elab3
⊢
A
∈
x
|
x
≺
2
𝑜
∨
x
≺
x
×
x
↔
A
≺
2
𝑜
∨
A
≺
A
×
A
13
2
12
bitri
⊢
A
∈
Fin
VI
↔
A
≺
2
𝑜
∨
A
≺
A
×
A