Metamath Proof Explorer


Theorem isfin6

Description: Definition of a VI-finite set. (Contributed by Stefan O'Rear, 16-May-2015)

Ref Expression
Assertion isfin6 A FinVI A 2 𝑜 A A × A

Proof

Step Hyp Ref Expression
1 df-fin6 FinVI = x | x 2 𝑜 x x × x
2 1 eleq2i A FinVI A x | x 2 𝑜 x x × x
3 relsdom Rel
4 3 brrelex1i A 2 𝑜 A V
5 3 brrelex1i A A × A A V
6 4 5 jaoi A 2 𝑜 A A × A A V
7 breq1 x = A x 2 𝑜 A 2 𝑜
8 id x = A x = A
9 8 sqxpeqd x = A x × x = A × A
10 8 9 breq12d x = A x x × x A A × A
11 7 10 orbi12d x = A x 2 𝑜 x x × x A 2 𝑜 A A × A
12 6 11 elab3 A x | x 2 𝑜 x x × x A 2 𝑜 A A × A
13 2 12 bitri A FinVI A 2 𝑜 A A × A