Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
isfin7
Next ⟩
sdom2en01
Metamath Proof Explorer
Ascii
Unicode
Theorem
isfin7
Description:
Definition of a VII-finite set.
(Contributed by
Stefan O'Rear
, 16-May-2015)
Ref
Expression
Assertion
isfin7
⊢
A
∈
V
→
A
∈
Fin
VII
↔
¬
∃
y
∈
On
∖
ω
A
≈
y
Proof
Step
Hyp
Ref
Expression
1
breq1
⊢
x
=
A
→
x
≈
y
↔
A
≈
y
2
1
rexbidv
⊢
x
=
A
→
∃
y
∈
On
∖
ω
x
≈
y
↔
∃
y
∈
On
∖
ω
A
≈
y
3
2
notbid
⊢
x
=
A
→
¬
∃
y
∈
On
∖
ω
x
≈
y
↔
¬
∃
y
∈
On
∖
ω
A
≈
y
4
df-fin7
⊢
Fin
VII
=
x
|
¬
∃
y
∈
On
∖
ω
x
≈
y
5
3
4
elab2g
⊢
A
∈
V
→
A
∈
Fin
VII
↔
¬
∃
y
∈
On
∖
ω
A
≈
y