Metamath Proof Explorer


Theorem isfin7

Description: Definition of a VII-finite set. (Contributed by Stefan O'Rear, 16-May-2015)

Ref Expression
Assertion isfin7 A V A FinVII ¬ y On ω A y

Proof

Step Hyp Ref Expression
1 breq1 x = A x y A y
2 1 rexbidv x = A y On ω x y y On ω A y
3 2 notbid x = A ¬ y On ω x y ¬ y On ω A y
4 df-fin7 FinVII = x | ¬ y On ω x y
5 3 4 elab2g A V A FinVII ¬ y On ω A y