Metamath Proof Explorer


Theorem isfin7-2

Description: A set is VII-finite iff it is non-well-orderable or finite. (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion isfin7-2 A V A FinVII A dom card A Fin

Proof

Step Hyp Ref Expression
1 isfin7 A FinVII A FinVII ¬ x On ω A x
2 1 ibi A FinVII ¬ x On ω A x
3 isnum2 A dom card x On x A
4 ensym x A A x
5 simprl ¬ A Fin x On A x x On
6 enfi A x A Fin x Fin
7 onfin x On x Fin x ω
8 6 7 sylan9bbr x On A x A Fin x ω
9 8 biimprd x On A x x ω A Fin
10 9 con3d x On A x ¬ A Fin ¬ x ω
11 10 impcom ¬ A Fin x On A x ¬ x ω
12 5 11 eldifd ¬ A Fin x On A x x On ω
13 simprr ¬ A Fin x On A x A x
14 12 13 jca ¬ A Fin x On A x x On ω A x
15 4 14 sylanr2 ¬ A Fin x On x A x On ω A x
16 15 ex ¬ A Fin x On x A x On ω A x
17 16 reximdv2 ¬ A Fin x On x A x On ω A x
18 17 com12 x On x A ¬ A Fin x On ω A x
19 3 18 sylbi A dom card ¬ A Fin x On ω A x
20 19 con1d A dom card ¬ x On ω A x A Fin
21 2 20 syl5com A FinVII A dom card A Fin
22 eldifi x On ω x On
23 ensym A x x A
24 isnumi x On x A A dom card
25 22 23 24 syl2an x On ω A x A dom card
26 25 rexlimiva x On ω A x A dom card
27 26 con3i ¬ A dom card ¬ x On ω A x
28 isfin7 A V A FinVII ¬ x On ω A x
29 27 28 syl5ibr A V ¬ A dom card A FinVII
30 fin17 A Fin A FinVII
31 30 a1i A V A Fin A FinVII
32 29 31 jad A V A dom card A Fin A FinVII
33 21 32 impbid2 A V A FinVII A dom card A Fin