| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relsdom |  | 
						
							| 2 | 1 | brrelex2i |  | 
						
							| 3 |  | sdomdom |  | 
						
							| 4 |  | domeng |  | 
						
							| 5 | 3 4 | imbitrid |  | 
						
							| 6 |  | ensym |  | 
						
							| 7 | 6 | ad2antrl |  | 
						
							| 8 |  | simpl |  | 
						
							| 9 |  | ensdomtr |  | 
						
							| 10 | 7 8 9 | syl2anc |  | 
						
							| 11 |  | sdomnen |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 |  | unbnn |  | 
						
							| 15 | 14 | 3expia |  | 
						
							| 16 | 2 13 15 | syl2an |  | 
						
							| 17 | 12 16 | mtod |  | 
						
							| 18 |  | rexnal |  | 
						
							| 19 |  | omsson |  | 
						
							| 20 |  | sstr |  | 
						
							| 21 | 19 20 | mpan2 |  | 
						
							| 22 |  | nnord |  | 
						
							| 23 |  | ssel2 |  | 
						
							| 24 |  | vex |  | 
						
							| 25 | 24 | elon |  | 
						
							| 26 | 23 25 | sylib |  | 
						
							| 27 |  | ordtri1 |  | 
						
							| 28 | 26 27 | sylan |  | 
						
							| 29 | 28 | an32s |  | 
						
							| 30 | 29 | ralbidva |  | 
						
							| 31 |  | unissb |  | 
						
							| 32 |  | ralnex |  | 
						
							| 33 | 32 | bicomi |  | 
						
							| 34 | 30 31 33 | 3bitr4g |  | 
						
							| 35 |  | ordunisssuc |  | 
						
							| 36 | 34 35 | bitr3d |  | 
						
							| 37 | 21 22 36 | syl2an |  | 
						
							| 38 |  | peano2b |  | 
						
							| 39 |  | ssnnfi |  | 
						
							| 40 | 38 39 | sylanb |  | 
						
							| 41 | 40 | ex |  | 
						
							| 42 | 41 | adantl |  | 
						
							| 43 | 37 42 | sylbid |  | 
						
							| 44 | 43 | rexlimdva |  | 
						
							| 45 | 18 44 | biimtrrid |  | 
						
							| 46 | 45 | ad2antll |  | 
						
							| 47 | 17 46 | mpd |  | 
						
							| 48 |  | simprl |  | 
						
							| 49 |  | enfii |  | 
						
							| 50 | 47 48 49 | syl2anc |  | 
						
							| 51 | 50 | ex |  | 
						
							| 52 | 51 | exlimdv |  | 
						
							| 53 | 5 52 | sylcom |  | 
						
							| 54 | 2 53 | mpcom |  |