Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Commutative rings
isfld2
Next ⟩
crngohomfo
Metamath Proof Explorer
Ascii
Unicode
Theorem
isfld2
Description:
The predicate "is a field".
(Contributed by
Jeff Madsen
, 10-Jun-2010)
Ref
Expression
Assertion
isfld2
⊢
K
∈
Fld
↔
K
∈
DivRingOps
∧
K
∈
CRingOps
Proof
Step
Hyp
Ref
Expression
1
flddivrng
⊢
K
∈
Fld
→
K
∈
DivRingOps
2
fldcrng
⊢
K
∈
Fld
→
K
∈
CRingOps
3
1
2
jca
⊢
K
∈
Fld
→
K
∈
DivRingOps
∧
K
∈
CRingOps
4
iscrngo
⊢
K
∈
CRingOps
↔
K
∈
RingOps
∧
K
∈
Com2
5
4
simprbi
⊢
K
∈
CRingOps
→
K
∈
Com2
6
elin
⊢
K
∈
DivRingOps
∩
Com2
↔
K
∈
DivRingOps
∧
K
∈
Com2
7
6
biimpri
⊢
K
∈
DivRingOps
∧
K
∈
Com2
→
K
∈
DivRingOps
∩
Com2
8
df-fld
⊢
Fld
=
DivRingOps
∩
Com2
9
7
8
eleqtrrdi
⊢
K
∈
DivRingOps
∧
K
∈
Com2
→
K
∈
Fld
10
5
9
sylan2
⊢
K
∈
DivRingOps
∧
K
∈
CRingOps
→
K
∈
Fld
11
3
10
impbii
⊢
K
∈
Fld
↔
K
∈
DivRingOps
∧
K
∈
CRingOps