Metamath Proof Explorer


Theorem isfld2

Description: The predicate "is a field". (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion isfld2 K Fld K DivRingOps K CRingOps

Proof

Step Hyp Ref Expression
1 flddivrng K Fld K DivRingOps
2 fldcrng K Fld K CRingOps
3 1 2 jca K Fld K DivRingOps K CRingOps
4 iscrngo K CRingOps K RingOps K Com2
5 4 simprbi K CRingOps K Com2
6 elin K DivRingOps Com2 K DivRingOps K Com2
7 6 biimpri K DivRingOps K Com2 K DivRingOps Com2
8 df-fld Fld = DivRingOps Com2
9 7 8 eleqtrrdi K DivRingOps K Com2 K Fld
10 5 9 sylan2 K DivRingOps K CRingOps K Fld
11 3 10 impbii K Fld K DivRingOps K CRingOps