Metamath Proof Explorer


Theorem isfldidl

Description: Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses isfldidl.1 G = 1 st K
isfldidl.2 H = 2 nd K
isfldidl.3 X = ran G
isfldidl.4 Z = GId G
isfldidl.5 U = GId H
Assertion isfldidl K Fld K CRingOps U Z Idl K = Z X

Proof

Step Hyp Ref Expression
1 isfldidl.1 G = 1 st K
2 isfldidl.2 H = 2 nd K
3 isfldidl.3 X = ran G
4 isfldidl.4 Z = GId G
5 isfldidl.5 U = GId H
6 fldcrng K Fld K CRingOps
7 flddivrng K Fld K DivRingOps
8 1 2 3 4 5 dvrunz K DivRingOps U Z
9 7 8 syl K Fld U Z
10 1 2 3 4 divrngidl K DivRingOps Idl K = Z X
11 7 10 syl K Fld Idl K = Z X
12 6 9 11 3jca K Fld K CRingOps U Z Idl K = Z X
13 crngorngo K CRingOps K RingOps
14 13 3ad2ant1 K CRingOps U Z Idl K = Z X K RingOps
15 simp2 K CRingOps U Z Idl K = Z X U Z
16 1 rneqi ran G = ran 1 st K
17 3 16 eqtri X = ran 1 st K
18 17 2 5 rngo1cl K RingOps U X
19 13 18 syl K CRingOps U X
20 19 ad2antrr K CRingOps Idl K = Z X x X Z U X
21 eldif x X Z x X ¬ x Z
22 snssi x X x X
23 1 3 igenss K RingOps x X x K IdlGen x
24 22 23 sylan2 K RingOps x X x K IdlGen x
25 vex x V
26 25 snss x K IdlGen x x K IdlGen x
27 26 biimpri x K IdlGen x x K IdlGen x
28 eleq2 K IdlGen x = Z x K IdlGen x x Z
29 27 28 syl5ibcom x K IdlGen x K IdlGen x = Z x Z
30 29 con3dimp x K IdlGen x ¬ x Z ¬ K IdlGen x = Z
31 24 30 sylan K RingOps x X ¬ x Z ¬ K IdlGen x = Z
32 31 anasss K RingOps x X ¬ x Z ¬ K IdlGen x = Z
33 21 32 sylan2b K RingOps x X Z ¬ K IdlGen x = Z
34 33 adantlr K RingOps Idl K = Z X x X Z ¬ K IdlGen x = Z
35 eldifi x X Z x X
36 35 snssd x X Z x X
37 1 3 igenidl K RingOps x X K IdlGen x Idl K
38 36 37 sylan2 K RingOps x X Z K IdlGen x Idl K
39 eleq2 Idl K = Z X K IdlGen x Idl K K IdlGen x Z X
40 38 39 syl5ibcom K RingOps x X Z Idl K = Z X K IdlGen x Z X
41 40 imp K RingOps x X Z Idl K = Z X K IdlGen x Z X
42 41 an32s K RingOps Idl K = Z X x X Z K IdlGen x Z X
43 ovex K IdlGen x V
44 43 elpr K IdlGen x Z X K IdlGen x = Z K IdlGen x = X
45 42 44 sylib K RingOps Idl K = Z X x X Z K IdlGen x = Z K IdlGen x = X
46 45 ord K RingOps Idl K = Z X x X Z ¬ K IdlGen x = Z K IdlGen x = X
47 34 46 mpd K RingOps Idl K = Z X x X Z K IdlGen x = X
48 13 47 sylanl1 K CRingOps Idl K = Z X x X Z K IdlGen x = X
49 1 2 3 prnc K CRingOps x X K IdlGen x = z X | y X z = y H x
50 35 49 sylan2 K CRingOps x X Z K IdlGen x = z X | y X z = y H x
51 50 adantlr K CRingOps Idl K = Z X x X Z K IdlGen x = z X | y X z = y H x
52 48 51 eqtr3d K CRingOps Idl K = Z X x X Z X = z X | y X z = y H x
53 20 52 eleqtrd K CRingOps Idl K = Z X x X Z U z X | y X z = y H x
54 eqeq1 z = U z = y H x U = y H x
55 54 rexbidv z = U y X z = y H x y X U = y H x
56 55 elrab U z X | y X z = y H x U X y X U = y H x
57 53 56 sylib K CRingOps Idl K = Z X x X Z U X y X U = y H x
58 57 simprd K CRingOps Idl K = Z X x X Z y X U = y H x
59 eqcom y H x = U U = y H x
60 59 rexbii y X y H x = U y X U = y H x
61 58 60 sylibr K CRingOps Idl K = Z X x X Z y X y H x = U
62 61 ralrimiva K CRingOps Idl K = Z X x X Z y X y H x = U
63 62 3adant2 K CRingOps U Z Idl K = Z X x X Z y X y H x = U
64 14 15 63 jca32 K CRingOps U Z Idl K = Z X K RingOps U Z x X Z y X y H x = U
65 1 2 4 3 5 isdrngo3 K DivRingOps K RingOps U Z x X Z y X y H x = U
66 64 65 sylibr K CRingOps U Z Idl K = Z X K DivRingOps
67 simp1 K CRingOps U Z Idl K = Z X K CRingOps
68 isfld2 K Fld K DivRingOps K CRingOps
69 66 67 68 sylanbrc K CRingOps U Z Idl K = Z X K Fld
70 12 69 impbii K Fld K CRingOps U Z Idl K = Z X