Metamath Proof Explorer


Theorem isfmlasuc

Description: The characterization of a Godel formula of height at least 1. (Contributed by AV, 14-Oct-2023)

Ref Expression
Assertion isfmlasuc N ω F V F Fmla suc N F Fmla N u Fmla N v Fmla N F = u 𝑔 v i ω F = 𝑔 i u

Proof

Step Hyp Ref Expression
1 fmlasuc N ω Fmla suc N = Fmla N f | u Fmla N v Fmla N f = u 𝑔 v i ω f = 𝑔 i u
2 1 adantr N ω F V Fmla suc N = Fmla N f | u Fmla N v Fmla N f = u 𝑔 v i ω f = 𝑔 i u
3 2 eleq2d N ω F V F Fmla suc N F Fmla N f | u Fmla N v Fmla N f = u 𝑔 v i ω f = 𝑔 i u
4 elun F Fmla N f | u Fmla N v Fmla N f = u 𝑔 v i ω f = 𝑔 i u F Fmla N F f | u Fmla N v Fmla N f = u 𝑔 v i ω f = 𝑔 i u
5 4 a1i N ω F V F Fmla N f | u Fmla N v Fmla N f = u 𝑔 v i ω f = 𝑔 i u F Fmla N F f | u Fmla N v Fmla N f = u 𝑔 v i ω f = 𝑔 i u
6 eqeq1 f = F f = u 𝑔 v F = u 𝑔 v
7 6 rexbidv f = F v Fmla N f = u 𝑔 v v Fmla N F = u 𝑔 v
8 eqeq1 f = F f = 𝑔 i u F = 𝑔 i u
9 8 rexbidv f = F i ω f = 𝑔 i u i ω F = 𝑔 i u
10 7 9 orbi12d f = F v Fmla N f = u 𝑔 v i ω f = 𝑔 i u v Fmla N F = u 𝑔 v i ω F = 𝑔 i u
11 10 rexbidv f = F u Fmla N v Fmla N f = u 𝑔 v i ω f = 𝑔 i u u Fmla N v Fmla N F = u 𝑔 v i ω F = 𝑔 i u
12 11 elabg F V F f | u Fmla N v Fmla N f = u 𝑔 v i ω f = 𝑔 i u u Fmla N v Fmla N F = u 𝑔 v i ω F = 𝑔 i u
13 12 adantl N ω F V F f | u Fmla N v Fmla N f = u 𝑔 v i ω f = 𝑔 i u u Fmla N v Fmla N F = u 𝑔 v i ω F = 𝑔 i u
14 13 orbi2d N ω F V F Fmla N F f | u Fmla N v Fmla N f = u 𝑔 v i ω f = 𝑔 i u F Fmla N u Fmla N v Fmla N F = u 𝑔 v i ω F = 𝑔 i u
15 3 5 14 3bitrd N ω F V F Fmla suc N F Fmla N u Fmla N v Fmla N F = u 𝑔 v i ω F = 𝑔 i u