Metamath Proof Explorer


Theorem isfsupp

Description: The property of a class to be a finitely supported function (in relation to a given zero). (Contributed by AV, 23-May-2019)

Ref Expression
Assertion isfsupp R V Z W finSupp Z R Fun R R supp Z Fin

Proof

Step Hyp Ref Expression
1 funeq r = R Fun r Fun R
2 1 adantr r = R z = Z Fun r Fun R
3 oveq12 r = R z = Z r supp z = R supp Z
4 3 eleq1d r = R z = Z r supp z Fin R supp Z Fin
5 2 4 anbi12d r = R z = Z Fun r r supp z Fin Fun R R supp Z Fin
6 df-fsupp finSupp = r z | Fun r r supp z Fin
7 5 6 brabga R V Z W finSupp Z R Fun R R supp Z Fin