Description: Deduction form of isfsupp . (Contributed by SN, 29-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfsuppd.r | ||
| isfsuppd.z | |||
| isfsuppd.1 | |||
| isfsuppd.2 | |||
| Assertion | isfsuppd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfsuppd.r | ||
| 2 | isfsuppd.z | ||
| 3 | isfsuppd.1 | ||
| 4 | isfsuppd.2 | ||
| 5 | isfsupp | ||
| 6 | 1 2 5 | syl2anc | |
| 7 | 3 4 6 | mpbir2and |